[1] PALACIN, M. R. and DE GUIBERT, A. Why do batteries fail? Science, 351, 1253292(2016) [2] ANDRE, D., KIM, S. J., LAMP, P., LUX, S. F., MAGLIA, F., PASCHOS, O., and STIASZNY, B. Future generations of cathode materials:an automotive industry perspective. Journal of Materials Chemistry A, 3, 6709-6732(2015) [3] VETTER, J., NOVÁK, P., WAGNER, M. R., VEIT, C., MÖLLER, K. C., BESENHARD, J. O., WINTER, M., WOHLFAHRT-MEHRENS, M., VOGLER, C., and HAMMOUCHE, A. Ageing mechanisms in lithium-ion batteries. Journal of Power Sources, 147, 269-281(2005) [4] GOODENOUGH, J. B. and PARK, K. S. The Li-ion rechargeable battery:a perspective. Journal of the American Chemical Society, 135, 1167-1176(2013) [5] WOHLFAHRT-MEHRENS, M., VOGLER, C., and GARCHE, J. Aging mechanisms of lithium cathode materials. Journal of Power Sources, 127, 58-64(2004) [6] LU, B., NING, C. Q., SHI, D. X., ZHAO, Y. F., and ZHANG, J. Q. Review on electrode-level fracture in lithium-ion batteries. Chinese Physics B, 29, 026201(2020) [7] XIAO, X. C., LIU, P., VERBRUGGE, M. W., HAFTBARADARAN, H., and GAO, H. J. Improved cycling stability of silicon thin film electrodes through patterning for high energy density lithium batteries. Journal of Power Sources, 196, 1409-1416(2011) [8] ZHAO, C. H., WADA, T., ANDRADE, V. D., GÜRSOY, D., KATO, H., and CHEN-WIEGART, Y. C. K. Imaging of 3D morphological evolution of nanoporous silicon anode in lithium ion battery by X-ray nano-tomography. Nano Energy, 52, 381-390(2018) [9] PAL, S., DAMLE, S. S., PATEL, S. H., DATTA, M. K., KUMTA, P. N., and MAITI, S. Modeling the delamination of amorphous-silicon thin film anode for lithium-ion battery. Journal of Power Sources, 246, 149-159(2014) [10] LIU, M., GAO, C. H., and YANG, F. Q. Analysis of diffusion-induced delamination of an elasticperfectly plastic film on a deformable substrate under potentiostatic operation. Modelling and Simulation in Materials Science and Engineering, 25, 065019(2017) [11] LU, B., SONG, Y. C., GUO, Z. S., and ZHANG, J. Q. Modeling of progressive delamination in a thin film driven by diffusion-induced stresses. International Journal of Solids and Structures, 50, 2495-2507(2013) [12] LU, B., ZHAO, Y. F., SONG, Y. C., and ZHANG, J. Q. Analytical model on lithiation-induced interfacial debonding of an active layer from a rigid substrate. Journal of Applied Mechanics, 83, 121009(2016) [13] KIM, H. J., CHOI, S., LEE, S. J., SEO, M. W., LEE, J. G., DENIZ, E., LEE, Y. J., KIM, E. K., and CHOI, J. W. Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells. Nano Letters, 16, 282-288(2016) [14] ZHAO, H., WANG, Z. H., LU, P., JIANG, M., SHI, F. F., SONG, X. Y., ZHENG, Z. Y., ZHOU, X., FU, Y. B., ABDELBAST, G., XIAO, X. C., LIU, Z., BATTAGLIA, V. S., ZAGHIB, K., and LIU, G. Toward practical application of functional conductive polymer binder for a high-energy lithium-ion battery design. Nano Letters, 14, 6704-6710(2014) [15] HOLTSTIEGE, F., WILKEN, A., WINTER, M., and PLACKE, T. Running out of lithium? A route to differentiate between capacity losses and active lithium losses in lithium-ion batteries. Physical Chemistry Chemical Physics, 19, 25905-25918(2017) [16] DOMI, Y., USUI, H., IWANARI, D., and SAKAGUCHI, H. Effect of mechanical pre-lithiation on electrochemical performance of silicon negative electrode for lithium-ion batteries. Journal of the Electrochemical Society, 164, A1651-A1654(2017) [17] KIM, K. H., SHON, J., JEONG, H., PARK, H., LIM, S. J., and HEO, J. S. Improving the cyclability of silicon anodes for lithium-ion batteries using a simple pre-lithiation method. Journal of Power Sources, 459, 228066(2020) [18] LIU, Q. Q., DU, C. Y., SHEN, B., ZUO, P. J., CHENG, X. Q., MA, Y. L., YIN, G. P., and GAO, Y. Z. Understanding undesirable anode lithium plating issues in lithium-ion batteries. RSC Advances, 6, 88683-88700(2016) [19] HUANG, B., HUANG, T., WAN, L. Y., and YU, A. S. Pre-lithiating SiO anodes for lithium-ion batteries by a simple, effective, and controllable strategy using stabilized lithium metal powder. ACS Sustainable Chemistry and Engineering, 9, 648-657(2021) [20] ZHAO, J., LU, Z. D., LIU, N., LEE, H. W., MCDOWELL, M. T., and CUI, Y. Dry-airstable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents. Nature Communications, 5, 5088(2014) [21] LI, S. H., WANG, C., YU, J. M., HAN, Y. Y., and LU, Z. D. Understanding the role of conductive polymer in thermal lithiation and battery performance of Li-Sn alloy anode. Energy Storage Materials, 20, 7-13(2019) [22] DOMI, Y., USUI, H., IEUJI, N., NISHIKAWA, K., and SAKAGUCHI, H. Lithiation/delithiation properties of lithium silicide electrodes in ionic-liquid electrolytes. ACS Applied Materials & Interfaces, 13, 3816-3824(2021) [23] LU, B., SONG, Y. C., and ZHANG, J. Q. Time to delamination onset and critical size of patterned thin film electrodes of lithium ion batteries. Journal of Power Sources, 289, 168-183(2015) [24] LU, B., SONG, Y. C., GUO, Z. S., and ZHANG, J. Q. Analysis of delamination in thin film electrodes under galvanostatic and potentiostatic operations with Li-ion diffusion from edge. Acta Mechanica Sinica, 29, 348-356(2013) [25] KOERVER, R., ZHANG, W. B., DE BIASI, L., SCHWEIDLER, S., KONDRAKOV, A. O., KOLLING, S., BREZESINSKI, T., HARTMANN, P., ZEIER, W. G., and JANEK, J. Chemomechanical expansion of lithium electrode materials-on the route to mechanically optimized all-solid-state batteries. Energy & Environmental Science, 11, 2142-2158(2018) [26] SHENOY, V. B., JOHARI, P., and QI, Y. Elastic softening of amorphous and crystalline Li-Si phases with increasing Li concentration:a first-principles study. Journal of Power Sources, 195, 6825-6830(2010) [27] XU, R. and ZHAO, K. J. Corrosive fracture of electrodes in Li-ion batteries. Journal of the Mechanics and Physics of Solids, 121, 258-280(2018) [28] GUO, Z. S., LIU, C., LU, B., and FENG, J. M. Theoretical and experimental study on the interfacial adhesive properties of graphite electrodes in different charging and aging states. Carbon, 150, 32-42(2019) [29] STOURNARA, M. E., XIAO, X. C., QI, Y., JOHARI, P., LU, P., SHELDON, B. W., GAO, H. J., and SHENOY, V. B. Li segregation induces structure and strength changes at the amorphous Si/Cu interface. Nano Letters, 13, 4759-4768(2013) [30] HU, J. Z., WANG, Y. K., LI, D. W., and CHEN, Y. T. Effects of adhesion and cohesion on the electrochemical performance and durability of silicon composite electrodes. Journal of Power Sources, 397, 223-230(2018) [31] LI, J., DOZIER, A. K., LI, Y., YANG, F., and CHEN, Y. T. Crack pattern formation in thin film lithium-ion battery electrodes. Journal of the Electrochemical Society, 158, A689-A694(2011) [32] CHAN, C. K., PENG, H., LIU, G., MCILWRATH, K., ZHANG, X. F., HUGGINS, R. A., and CUI, Y. High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology, 3, 31-35(2008) [33] LI, Y., LU, B., GUO, B. K., SONG, Y. C., and ZHANG, J. Q. Partial lithiation strategies for suppressing degradation of silicon composite electrodes. Electrochimica Acta, 295, 778-786(2019) [34] WEN, S. H., LU, B., ZHAO, Y. F., SONG, Y. C., and ZHANG, J. Q. Feigned death induced by partial delithiation in silicon composite electrodes. Journal of Power Sources, 495, 229763(2021) [35] KAMALI, A. and FRAY, D. J. Review on carbon and silicon based materials as anode materials for lithium ion batteries. Journal of New Materials for Electrochemical Systems, 13, 147-160(2010) |