Applied Mathematics and Mechanics (English Edition) ›› 2022, Vol. 43 ›› Issue (7): 1027-1044.doi: https://doi.org/10.1007/s10483-022-2871-6
• Articles • Previous Articles Next Articles
Xiaoye MAO1, Mengmeng YIN1, Hu DING1, Xiaofeng GENG1, Yongjun SHEN2, Liqun CHEN1
Received:
2021-12-26
Revised:
2022-03-11
Online:
2022-07-01
Published:
2022-06-30
Contact:
Hu DING, E-mail: dinghu3@shu.edu.cn; Yongjun SHEN, E-mail: shenyongjun@126.com
Supported by:
2010 MSC Number:
Xiaoye MAO, Mengmeng YIN, Hu DING, Xiaofeng GENG, Yongjun SHEN, Liqun CHEN. Modeling, analysis, and simulation of X-shape quasi-zero-stiffness-roller vibration isolators. Applied Mathematics and Mechanics (English Edition), 2022, 43(7): 1027-1044.
[1] CARRELLA, A., BRENNAN, M. J., and WATERS, T. P. Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. Journal of Sound and Vibration, 301, 678-689(2007) [2] IKEGAMI, R. E. A. Zero-G ground test simulation methods. Proceedings of the 11th Aerospace Testing Seminar, Institute of Environmental Science, Manhattan Beach (1988) [3] WOODARD, S. E. and HOUSNER, J. M. The nonlinear behavior of a passive zero-spring-rate suspension system. 29th Structures, Structural Dynamics and Materials Conference, Reston (1998) [4] LACOSTE, L. LaCoste and Romberg straight-line gravity meter. Geophysics, 48, 606-610(1983) [5] IBRAHIM, R. A. Recent advances in nonlinear passive vibration isolators. Journal of Sound and Vibration, 314, 371-452(2008) [6] GUO, L. C., WANG, X., FAN, R. L., and BI, F. R. Review on development of high-static-lowdynamic-stiffness seat cushion mattress for vibration control of seating suspension system. Applied Sciences, 10, 2887(2020)[1] CARRELLA, A., BRENNAN, M. J., and WATERS, T. P. Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. Journal of Sound and Vibration, 301, 678-689(2007) [2] IKEGAMI, R. E. A. Zero-G ground test simulation methods. Proceedings of the 11th Aerospace Testing Seminar, Institute of Environmental Science, Manhattan Beach (1988) [3] WOODARD, S. E. and HOUSNER, J. M. The nonlinear behavior of a passive zero-spring-rate suspension system. 29th Structures, Structural Dynamics and Materials Conference, Reston (1998) [4] LACOSTE, L. LaCoste and Romberg straight-line gravity meter. Geophysics, 48, 606-610(1983) [5] IBRAHIM, R. A. Recent advances in nonlinear passive vibration isolators. Journal of Sound and Vibration, 314, 371-452(2008) [6] GUO, L. C., WANG, X., FAN, R. L., and BI, F. R. Review on development of high-static-lowdynamic-stiffness seat cushion mattress for vibration control of seating suspension system. Applied Sciences, 10, 2887(2020)1040 Xiaoye MAO, Mengmeng YIN, Hu DING, Xiaofeng GENG, Yongjun SHEN, and Liqun CHEN [7] NIU, F., MENG, L. S., WU, W. J., SUN, J. G., SU, W. H., MENG, G., and RAO, Z. S. Recent advances in quasi-zero-stiffness vibration isolation systems. Applied Mechanics and Materials, 397-400, 295-303(2013) [8] ZHANG, J. Z., LI, D., CHEN, M. J., and DONG, S. An ultra-low frequency parallel connection nonlinear isolator for precision instruments. Key Engineering Materials, 257-258, 231-236(2004) [9] CARRELLA, A., BRENNAN, M. J., KOVACIC, I., and WATERS, T. P. On the force transmissibility of a vibration isolator with quasi-zero-stiffness. Journal of Sound and Vibration, 322, 707-717(2009) [10] CARRELLA, A., BRENNAN, M. J., WATERS, T. P., and LOPES, V., JR. Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness. International Journal of Mechanical Sciences, 55, 22-29(2012) [11] TANG, B. and BRENNAN, M. J. On the shock performance of a nonlinear vibration isolator with high-static-low-dynamic-stiffness. International Journal of Mechanical Sciences, 81, 207-214(2014) [12] HAO, Z. F., CAO, Q. J., and WIERCIGROCH, M. Nonlinear dynamics of the quasi-zero-stiffness SD oscillator based upon the local and global bifurcation analyses. Nonlinear Dynamics, 87, 987-1014(2017) [13] ABOLFATHI, A., BRENNAN, M. J., WATERS, T. P., and TANG, B. On the effects of mistuning a force-excited system containing a quasi-zero-stiffness vibration isolator. Journal of Vibration and Acoustics, 137, 044502(2015) [14] PENG, Z. K., LANG, Z. Q., ZHAO, L., BILLINGS, S. A., TOMLINSON, G. R., and GUO, P. The force transmissibility of MDOF structures with a non-linear viscous damping device. International Journal of Non-Linear Mechanics, 46, 1305-1314(2011) [15] WANG, Y., LI, S. M., CHENG, C., and SU, Y. Q. Adaptive control of a vehicle-seat-human coupled model using quasi-zero-stiffness vibration isolator as seat suspension. Journal of Mechanical Science and Technology, 32, 2973-2985(2018) [16] XU, D. L., ZHANG, Y. Y., ZHOU, J. X., and LOU, J. J. On the analytical and experimental assessment of the performance of a quasi-zero-stiffness isolator. Journal of Vibration and Control, 20, 2314-2325(2014) [17] ZHAO, F., JI, J. C., YE, K., and LUO, Q. T. Increase of quasi-zero stiffness region using two pairs of oblique springs. Mechanical Systems and Signal Processing, 144, 106975(2020) [18] ZHAO, F., JI, J. C., LUO, Q. T., CAO, S. Q., CHEN, L. M., and DU, W. L. An improved quasi-zero stiffness isolator with two pairs of oblique springs to increase isolation frequency band. Nonlinear Dynamics 104, 349-365(2021) [19] ZHAO, F., JI, J. C., YE, K., and LUO, Q. T. An innovative quasi-zero stiffness isolator with three pairs of oblique springs. International Journal of Mechanical Sciences, 192, 106093(2021) [20] LU, Z. Q., BRENNAN, M. J., YANG, T. J., LI, X. H., and LIU, Z. G. An investigation of a two-stage nonlinear vibration isolation system. Journal of Sound and Vibration, 332, 1456-1464(2013) [21] LU, Z. Q., YANG, T. J., BRENNAN, M. J., LI, X. H., and LIU, Z. G. On the performance of a two-stage vibration isolation system which has geometrically nonlinear stiffness. Journal of Vibration and Acoustics, 136, 064501(2014) [22] WANG, Y., LI, S. M., NEILD, S. A., and JIANG, J. Z. Comparison of the dynamic performance of nonlinear one and two degree-of-freedom vibration isolators with quasi-zero stiffness. Nonlinear Dynamics, 88, 635-654(2017) [23] DENG, T. C., WEN, G. L., DING, H., LU, Z. Q., and CHEN, L. Q. A bio-inspired isolator based on characteristics of quasi-zero stiffness and bird multi-layer neck. Mechanical Systems Signal Processing, 145, 106967(2020) [24] XU, J. and SUN, X. T. A multi-directional vibration isolator based on quasi-zero-stiffness structure and time-delayed active control. International Journal of Mechanical Sciences, 100, 126-135(2015)[1] CARRELLA, A., BRENNAN, M. J., and WATERS, T. P. Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. Journal of Sound and Vibration, 301, 678-689(2007) [2] IKEGAMI, R. E. A. Zero-G ground test simulation methods. Proceedings of the 11th Aerospace Testing Seminar, Institute of Environmental Science, Manhattan Beach (1988) [3] WOODARD, S. E. and HOUSNER, J. M. The nonlinear behavior of a passive zero-spring-rate suspension system. 29th Structures, Structural Dynamics and Materials Conference, Reston (1998) [4] LACOSTE, L. LaCoste and Romberg straight-line gravity meter. Geophysics, 48, 606-610(1983) [5] IBRAHIM, R. A. Recent advances in nonlinear passive vibration isolators. Journal of Sound and Vibration, 314, 371-452(2008) [6] GUO, L. C., WANG, X., FAN, R. L., and BI, F. R. Review on development of high-static-lowdynamic-stiffness seat cushion mattress for vibration control of seating suspension system. Applied Sciences, 10, 2887(2020)1040 Xiaoye MAO, Mengmeng YIN, Hu DING, Xiaofeng GENG, Yongjun SHEN, and Liqun CHEN [7] NIU, F., MENG, L. S., WU, W. J., SUN, J. G., SU, W. H., MENG, G., and RAO, Z. S. Recent advances in quasi-zero-stiffness vibration isolation systems. Applied Mechanics and Materials, 397-400, 295-303(2013) [8] ZHANG, J. Z., LI, D., CHEN, M. J., and DONG, S. An ultra-low frequency parallel connection nonlinear isolator for precision instruments. Key Engineering Materials, 257-258, 231-236(2004) [9] CARRELLA, A., BRENNAN, M. J., KOVACIC, I., and WATERS, T. P. On the force transmissibility of a vibration isolator with quasi-zero-stiffness. Journal of Sound and Vibration, 322, 707-717(2009) [10] CARRELLA, A., BRENNAN, M. J., WATERS, T. P., and LOPES, V., JR. Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness. International Journal of Mechanical Sciences, 55, 22-29(2012) [11] TANG, B. and BRENNAN, M. J. On the shock performance of a nonlinear vibration isolator with high-static-low-dynamic-stiffness. International Journal of Mechanical Sciences, 81, 207-214(2014) [12] HAO, Z. F., CAO, Q. J., and WIERCIGROCH, M. Nonlinear dynamics of the quasi-zero-stiffness SD oscillator based upon the local and global bifurcation analyses. Nonlinear Dynamics, 87, 987-1014(2017) [13] ABOLFATHI, A., BRENNAN, M. J., WATERS, T. P., and TANG, B. On the effects of mistuning a force-excited system containing a quasi-zero-stiffness vibration isolator. Journal of Vibration and Acoustics, 137, 044502(2015) [14] PENG, Z. K., LANG, Z. Q., ZHAO, L., BILLINGS, S. A., TOMLINSON, G. R., and GUO, P. The force transmissibility of MDOF structures with a non-linear viscous damping device. International Journal of Non-Linear Mechanics, 46, 1305-1314(2011) [15] WANG, Y., LI, S. M., CHENG, C., and SU, Y. Q. Adaptive control of a vehicle-seat-human coupled model using quasi-zero-stiffness vibration isolator as seat suspension. Journal of Mechanical Science and Technology, 32, 2973-2985(2018) [16] XU, D. L., ZHANG, Y. Y., ZHOU, J. X., and LOU, J. J. On the analytical and experimental assessment of the performance of a quasi-zero-stiffness isolator. Journal of Vibration and Control, 20, 2314-2325(2014) [17] ZHAO, F., JI, J. C., YE, K., and LUO, Q. T. Increase of quasi-zero stiffness region using two pairs of oblique springs. Mechanical Systems and Signal Processing, 144, 106975(2020) [18] ZHAO, F., JI, J. C., LUO, Q. T., CAO, S. Q., CHEN, L. M., and DU, W. L. An improved quasi-zero stiffness isolator with two pairs of oblique springs to increase isolation frequency band. Nonlinear Dynamics 104, 349-365(2021) [19] ZHAO, F., JI, J. C., YE, K., and LUO, Q. T. An innovative quasi-zero stiffness isolator with three pairs of oblique springs. International Journal of Mechanical Sciences, 192, 106093(2021) [20] LU, Z. Q., BRENNAN, M. J., YANG, T. J., LI, X. H., and LIU, Z. G. An investigation of a two-stage nonlinear vibration isolation system. Journal of Sound and Vibration, 332, 1456-1464(2013) [21] LU, Z. Q., YANG, T. J., BRENNAN, M. J., LI, X. H., and LIU, Z. G. On the performance of a two-stage vibration isolation system which has geometrically nonlinear stiffness. Journal of Vibration and Acoustics, 136, 064501(2014) [22] WANG, Y., LI, S. M., NEILD, S. A., and JIANG, J. Z. Comparison of the dynamic performance of nonlinear one and two degree-of-freedom vibration isolators with quasi-zero stiffness. Nonlinear Dynamics, 88, 635-654(2017) [23] DENG, T. C., WEN, G. L., DING, H., LU, Z. Q., and CHEN, L. Q. A bio-inspired isolator based on characteristics of quasi-zero stiffness and bird multi-layer neck. Mechanical Systems Signal Processing, 145, 106967(2020) [24] XU, J. and SUN, X. T. A multi-directional vibration isolator based on quasi-zero-stiffness structure and time-delayed active control. International Journal of Mechanical Sciences, 100, 126-135(2015) Modeling, analysis, and simulation of X-shape QZS-roller vibration isolators 1041 [25] ZHU, G. N., LIU, J., CAO, Q. J., CHENG, Y. F., LU, Z. C., and ZHU, Z. B. A two degree of freedom stable quasi-zero stiffness prototype and its applications in aseismic engineering. SCIENCE CHINA Technological Sciences, 63, 496-505(2020) [26] TOBIAS, S. A. Design of small isolator units for the suppression of low frequency vibration. Journal of Mechanical Engineering Science, 26, 280-292(1959) [27] PLATUS, D. L. Negative-stiffness-mechanism vibration isolation systems. Optics and Metrology, 1619, 44-54(1991) [28] LIU, X. T., HUANG, X. C., and HUA, H. X. On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector. Journal of Sound and Vibration, 332, 3359-3376(2013) [29] YANG, J., XIONG, Y. P., and XING, J. T. Dynamics and power flow behaviour of a nonlinear vibration isolation system with a negative stiffness mechanism. Journal of Sound and Vibration, 332, 167-183(2013) [30] XU, D. L., YU, Q. P., ZHOU, J. X., and BISHOP, S. R. Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic. Journal of Sound and Vibration, 332, 3377-3389(2013) [31] JIANG, Y. L., SONG, C. S., DING, C. M., and XU, B. H. Design of magnetic-air hybrid quasi-zero stiffness vibration isolation system. Journal of Sound and Vibration, 477, 115346(2020) [32] LAN, C. C., YANG, S. A., and WU, Y. S. Design and experiment of a compact quasi-zero-stiffness isolator capable of a wide range of loads. Journal of Sound and Vibration, 333, 4843-4858(2014) [33] WANG, K., ZHOU, J. X., CHANG, Y. P., OUYANG, H. J., XU, D. L., and YANG, Y. A nonlinear ultra-low-frequency vibration isolator with dual quasi-zero-stiffness mechanism. Nonlinear Dynamics, 101, 755-773(2020) [34] AHN, H. J. Performance limit of a passive vertical isolator using a negative stiffness mechanism. Journal of Mechanical Science and Technology, 22, 2357-2364(2008) [35] ZHANG, W. and ZHAO, J. B. Analysis on nonlinear stiffness and vibration isolation performance of scissor-like structure with full types. Nonlinear Dynamics, 86, 17-36(2016) [36] CHENG, C., LI, S. M., WANG, Y., and JIANG, X. X. Force and displacement transmissibility of a quasi-zero stiffness vibration isolator with geometric nonlinear damping. Nonlinear Dynamics, 87, 2267-2279(2017) [37] CHENG, C., LI, S. M., WANG, Y., and JIANG, X. X. Resonance of a quasi-zero stiffness vibration system under base excitation with load mismatch. International Journal of Structural Stability and Dynamics, 18, 1850002(2018) [38] WANG, Y., LI, H. X., CHENG, C., DING, H., and CHEN, L. Q. Dynamic performance analysis of a mixed-connected inerter-based quasi-zero stiffness vibration isolator. Structural Control&Health Monitoring, 27, e2604(2020) [39] SUN, X. T., JING, X. J., XU, J., and CHENG, L. Vibration isolation via a scissor-like structured platform. Journal of Sound and Vibration, 333, 2404-2420(2014) [40] YAN, B., WANG, Z. H., MA, H. Y., BAO, H. H., WANG, K., and WU, C. Y. A novel lever-type vibration isolator with eddy current damping. Journal of Sound and Vibration, 494, 115862(2021) [41] LIU, C. C., JING, X. J., and LI, F. M. Vibration isolation using a hybrid lever-type isolation system with an X-shape supporting structure. International Journal of Mechanical Sciences, 98, 169-177(2015) [42] LIU, C. C., JING, X. J., and CHEN, Z. B. Band stop vibration suppression using a passive Xshape structured lever-type isolation system. Mechanical Systems and Signal Processing, 68-69, 342-353(2016) [43] SUN, X. T. and JING, X. J. Analysis and design of a nonlinear stiffness and damping system with a scissor-like structure. Mechanical Systems and Signal Processing, 66-67, 723-742(2016) [44] SUN, X. T. and JING, X. J. A nonlinear vibration isolator achieving high-static-low-dynamic stiffness and tunable anti-resonance frequency band. Mechanical Systems and Signal Processing, 80, 166-188(2016)[1] CARRELLA, A., BRENNAN, M. J., and WATERS, T. P. Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. Journal of Sound and Vibration, 301, 678-689(2007) [2] IKEGAMI, R. E. A. Zero-G ground test simulation methods. Proceedings of the 11th Aerospace Testing Seminar, Institute of Environmental Science, Manhattan Beach (1988) [3] WOODARD, S. E. and HOUSNER, J. M. The nonlinear behavior of a passive zero-spring-rate suspension system. 29th Structures, Structural Dynamics and Materials Conference, Reston (1998) [4] LACOSTE, L. LaCoste and Romberg straight-line gravity meter. Geophysics, 48, 606-610(1983) [5] IBRAHIM, R. A. Recent advances in nonlinear passive vibration isolators. Journal of Sound and Vibration, 314, 371-452(2008) [6] GUO, L. C., WANG, X., FAN, R. L., and BI, F. R. Review on development of high-static-lowdynamic-stiffness seat cushion mattress for vibration control of seating suspension system. Applied Sciences, 10, 2887(2020)1040 Xiaoye MAO, Mengmeng YIN, Hu DING, Xiaofeng GENG, Yongjun SHEN, and Liqun CHEN [7] NIU, F., MENG, L. S., WU, W. J., SUN, J. G., SU, W. H., MENG, G., and RAO, Z. S. Recent advances in quasi-zero-stiffness vibration isolation systems. Applied Mechanics and Materials, 397-400, 295-303(2013) [8] ZHANG, J. Z., LI, D., CHEN, M. J., and DONG, S. An ultra-low frequency parallel connection nonlinear isolator for precision instruments. Key Engineering Materials, 257-258, 231-236(2004) [9] CARRELLA, A., BRENNAN, M. J., KOVACIC, I., and WATERS, T. P. On the force transmissibility of a vibration isolator with quasi-zero-stiffness. Journal of Sound and Vibration, 322, 707-717(2009) [10] CARRELLA, A., BRENNAN, M. J., WATERS, T. P., and LOPES, V., JR. Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness. International Journal of Mechanical Sciences, 55, 22-29(2012) [11] TANG, B. and BRENNAN, M. J. On the shock performance of a nonlinear vibration isolator with high-static-low-dynamic-stiffness. International Journal of Mechanical Sciences, 81, 207-214(2014) [12] HAO, Z. F., CAO, Q. J., and WIERCIGROCH, M. Nonlinear dynamics of the quasi-zero-stiffness SD oscillator based upon the local and global bifurcation analyses. Nonlinear Dynamics, 87, 987-1014(2017) [13] ABOLFATHI, A., BRENNAN, M. J., WATERS, T. P., and TANG, B. On the effects of mistuning a force-excited system containing a quasi-zero-stiffness vibration isolator. Journal of Vibration and Acoustics, 137, 044502(2015) [14] PENG, Z. K., LANG, Z. Q., ZHAO, L., BILLINGS, S. A., TOMLINSON, G. R., and GUO, P. The force transmissibility of MDOF structures with a non-linear viscous damping device. International Journal of Non-Linear Mechanics, 46, 1305-1314(2011) [15] WANG, Y., LI, S. M., CHENG, C., and SU, Y. Q. Adaptive control of a vehicle-seat-human coupled model using quasi-zero-stiffness vibration isolator as seat suspension. Journal of Mechanical Science and Technology, 32, 2973-2985(2018) [16] XU, D. L., ZHANG, Y. Y., ZHOU, J. X., and LOU, J. J. On the analytical and experimental assessment of the performance of a quasi-zero-stiffness isolator. Journal of Vibration and Control, 20, 2314-2325(2014) [17] ZHAO, F., JI, J. C., YE, K., and LUO, Q. T. Increase of quasi-zero stiffness region using two pairs of oblique springs. Mechanical Systems and Signal Processing, 144, 106975(2020) [18] ZHAO, F., JI, J. C., LUO, Q. T., CAO, S. Q., CHEN, L. M., and DU, W. L. An improved quasi-zero stiffness isolator with two pairs of oblique springs to increase isolation frequency band. Nonlinear Dynamics 104, 349-365(2021) [19] ZHAO, F., JI, J. C., YE, K., and LUO, Q. T. An innovative quasi-zero stiffness isolator with three pairs of oblique springs. International Journal of Mechanical Sciences, 192, 106093(2021) [20] LU, Z. Q., BRENNAN, M. J., YANG, T. J., LI, X. H., and LIU, Z. G. An investigation of a two-stage nonlinear vibration isolation system. Journal of Sound and Vibration, 332, 1456-1464(2013) [21] LU, Z. Q., YANG, T. J., BRENNAN, M. J., LI, X. H., and LIU, Z. G. On the performance of a two-stage vibration isolation system which has geometrically nonlinear stiffness. Journal of Vibration and Acoustics, 136, 064501(2014) [22] WANG, Y., LI, S. M., NEILD, S. A., and JIANG, J. Z. Comparison of the dynamic performance of nonlinear one and two degree-of-freedom vibration isolators with quasi-zero stiffness. Nonlinear Dynamics, 88, 635-654(2017) [23] DENG, T. C., WEN, G. L., DING, H., LU, Z. Q., and CHEN, L. Q. A bio-inspired isolator based on characteristics of quasi-zero stiffness and bird multi-layer neck. Mechanical Systems Signal Processing, 145, 106967(2020) [24] XU, J. and SUN, X. T. A multi-directional vibration isolator based on quasi-zero-stiffness structure and time-delayed active control. International Journal of Mechanical Sciences, 100, 126-135(2015) Modeling, analysis, and simulation of X-shape QZS-roller vibration isolators 1041 [25] ZHU, G. N., LIU, J., CAO, Q. J., CHENG, Y. F., LU, Z. C., and ZHU, Z. B. A two degree of freedom stable quasi-zero stiffness prototype and its applications in aseismic engineering. SCIENCE CHINA Technological Sciences, 63, 496-505(2020) [26] TOBIAS, S. A. Design of small isolator units for the suppression of low frequency vibration. Journal of Mechanical Engineering Science, 26, 280-292(1959) [27] PLATUS, D. L. Negative-stiffness-mechanism vibration isolation systems. Optics and Metrology, 1619, 44-54(1991) [28] LIU, X. T., HUANG, X. C., and HUA, H. X. On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector. Journal of Sound and Vibration, 332, 3359-3376(2013) [29] YANG, J., XIONG, Y. P., and XING, J. T. Dynamics and power flow behaviour of a nonlinear vibration isolation system with a negative stiffness mechanism. Journal of Sound and Vibration, 332, 167-183(2013) [30] XU, D. L., YU, Q. P., ZHOU, J. X., and BISHOP, S. R. Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic. Journal of Sound and Vibration, 332, 3377-3389(2013) [31] JIANG, Y. L., SONG, C. S., DING, C. M., and XU, B. H. Design of magnetic-air hybrid quasi-zero stiffness vibration isolation system. Journal of Sound and Vibration, 477, 115346(2020) [32] LAN, C. C., YANG, S. A., and WU, Y. S. Design and experiment of a compact quasi-zero-stiffness isolator capable of a wide range of loads. Journal of Sound and Vibration, 333, 4843-4858(2014) [33] WANG, K., ZHOU, J. X., CHANG, Y. P., OUYANG, H. J., XU, D. L., and YANG, Y. A nonlinear ultra-low-frequency vibration isolator with dual quasi-zero-stiffness mechanism. Nonlinear Dynamics, 101, 755-773(2020) [34] AHN, H. J. Performance limit of a passive vertical isolator using a negative stiffness mechanism. Journal of Mechanical Science and Technology, 22, 2357-2364(2008) [35] ZHANG, W. and ZHAO, J. B. Analysis on nonlinear stiffness and vibration isolation performance of scissor-like structure with full types. Nonlinear Dynamics, 86, 17-36(2016) [36] CHENG, C., LI, S. M., WANG, Y., and JIANG, X. X. Force and displacement transmissibility of a quasi-zero stiffness vibration isolator with geometric nonlinear damping. Nonlinear Dynamics, 87, 2267-2279(2017) [37] CHENG, C., LI, S. M., WANG, Y., and JIANG, X. X. Resonance of a quasi-zero stiffness vibration system under base excitation with load mismatch. International Journal of Structural Stability and Dynamics, 18, 1850002(2018) [38] WANG, Y., LI, H. X., CHENG, C., DING, H., and CHEN, L. Q. Dynamic performance analysis of a mixed-connected inerter-based quasi-zero stiffness vibration isolator. Structural Control&Health Monitoring, 27, e2604(2020) [39] SUN, X. T., JING, X. J., XU, J., and CHENG, L. Vibration isolation via a scissor-like structured platform. Journal of Sound and Vibration, 333, 2404-2420(2014) [40] YAN, B., WANG, Z. H., MA, H. Y., BAO, H. H., WANG, K., and WU, C. Y. A novel lever-type vibration isolator with eddy current damping. Journal of Sound and Vibration, 494, 115862(2021) [41] LIU, C. C., JING, X. J., and LI, F. M. Vibration isolation using a hybrid lever-type isolation system with an X-shape supporting structure. International Journal of Mechanical Sciences, 98, 169-177(2015) [42] LIU, C. C., JING, X. J., and CHEN, Z. B. Band stop vibration suppression using a passive Xshape structured lever-type isolation system. Mechanical Systems and Signal Processing, 68-69, 342-353(2016) [43] SUN, X. T. and JING, X. J. Analysis and design of a nonlinear stiffness and damping system with a scissor-like structure. Mechanical Systems and Signal Processing, 66-67, 723-742(2016) [44] SUN, X. T. and JING, X. J. A nonlinear vibration isolator achieving high-static-low-dynamic stiffness and tunable anti-resonance frequency band. Mechanical Systems and Signal Processing, 80, 166-188(2016)1042 Xiaoye MAO, Mengmeng YIN, Hu DING, Xiaofeng GENG, Yongjun SHEN, and Liqun CHEN [45] JING, X. J., ZHANG, L. L., JIANG, G. Q., FENG, X., GUO, Y. Q., and XU, Z. D. Critical factors in designing a class of X-shaped structures for vibration isolation. Engineering Structures, 199, 109659(2019) [46] WU, Z. J., JING, X. J., SUN, B., and LI, F. M. A 6DOF passive vibration isolator using X-shape supporting structures. Journal of Sound and Vibration, 380, 90-111(2016) [47] FENG, X. and JING, X. J. Human body inspired vibration isolation:beneficial nonlinear stiffness, nonlinear damping&nonlinear inertia. Mechanical Systems and Signal Processing, 117, 786-812(2019) [48] SUN, X. T. and JING, X. J. Multi-direction vibration isolation with quasi-zero stiffness by employing geometrical nonlinearity. Mechanical Systems and Signal Processing, 62-63, 149-163(2015) [49] BIAN, J. and JING, X. J. Analysis and design of a novel and compact X-structured vibration isolation mount (X-mount) with wider quasi-zero-stiffness range. Nonlinear Dynamics, 101, 2195-2222(2020) [50] GUO, L. C., KHIU, A., FAN, R. L., and WANG, X. Analysis of a passive scissor-like structure isolator with quasi-zero stiffness for a seating system vibration-isolation application. International Journal of Vehicle Design, 82, 224-240(2020) [51] YAN, G., ZOU, H. X., WANG, S., ZHAO, L. C., GAO, Q. H., TAN, T., and ZHAN, W. M. Large stroke quasi-zero stiffness vibration isolator using three-link mechanism. Journal of Sound and Vibration, 478, 115344(2020) [52] DAI, H. H., JING, X. J., SUN, C., WANG, Y., and YUE, X. K. Accurate modeling and analysis of a bio-inspired isolation system:with application to on-orbit capture. Mechanical Systems and Signal Processing, 109, 111-133(2018) [53] DAI, H. H., JING, X. J., WANG, Y., YUE, X. K., and YUAN, J. P. Post-capture vibration suppression of spacecraft via a bio-inspired isolation system. Mechanical Systems and Signal Processing, 105, 214-240(2018) [54] WANG, X., YUE, X. K., DAI, H. H., and YUAN, J. P. Vibration suppression for post-capture spacecraft via a novel bio-inspired Stewart isolation system. Acta Astronautica, 168, 1-22(2020) [55] WANG, X., YUE, X. K., WEN, H. W., and YUAN, J. P. Hybrid passive/active vibration control of a loosely connected spacecraft system. Computer Modeling in Engineering&Sciences, 122, 61-87(2020) [56] WU, Z. J., JING, X. J., BIAN, J., LI, F. M., and ALLEN, R. Vibration isolation by exploring bio-inspired structural nonlinearity. Bioinspiration&Biomimetics, 10, 056015(2015) [57] HU, F. Z. and JING, X. J. A 6-DOF passive vibration isolator based on Stewart structure with X-shaped legs. Nonlinear Dynamics, 91, 157-185(2018) [58] WANG, Y. and JING, X. J. Nonlinear stiffness and dynamical response characteristics of an asymmetric X-shaped structure. Mechanical Systems and Signal Processing, 125, 142-169(2019) [59] WANG, Y., JING, X. J., and GUO, Y. Q. Nonlinear analysis of a bio-inspired vertically asymmetric isolation system under different structural constraints. Nonlinear Dynamics, 95, 445-464(2019) [60] ALABUZHEV, P. M. and RIVIN, E. I. Vibration Protecting and Measuring Systems with Quasizero Stiffness, Hemisphere Publishing Corporation, New York (1989) [61] ZHOU, J. X., WANG, X. L., XU, D. L., and BISHOP, S. Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam-roller-spring mechanisms. Journal of Sound and Vibration, 346, 53-69(2015) [62] WANG, X. L., ZHOU, J. X., XU, D. L., OUYANG, H. J., and DUAN, Y. Force transmissibility of a two-stage vibration isolation system with quasi-zero stiffness. Nonlinear Dynamics, 87, 633-646(2017) [63] ZHOU, J. X., XIAO, Q. Y., XU, D. L., OUYANG, H. J., and LI, Y. L. A novel quasi-zero-stiffness strut and its applications in six-degree-of-freedom vibration isolation platform. Journal of Sound and Vibration, 394, 59-74(2017) [64] ZHOU, J. X., XU, D. L., and BISHOP, S. A torsion quasi-zero stiffness vibration isolator. Journal of Sound and Vibration, 338, 121-133(2015) [65] WANG, K., ZHOU, J. X., and XU, D. L. Sensitivity analysis of parametric errors on the performance of a torsion quasi-zero-stiffness vibration isolator. International Journal of Mechanical Sciences, 134, 336-346(2017) [66] SUN, M. N., DONG, Z. X., SONG, G. Q., SUN, X. W., and LIU, W. J. A vibration isolation system using the negative stiffness corrector formed by cam-roller mechanisms with quadratic polynomial trajectory. Applied Sciences-Basel, 10, 3573(2020) [67] ZHANG, Q. L., XIA, S. Y., XU, D. L., and PENG, Z. K. A torsion-translational vibration isolator with quasi-zero stiffness. Nonlinear Dynamics, 99, 1467-1488(2020) [68] YE, K., JI, J. C., and BROWN, T. A novel integrated quasi-zero stiffness vibration isolator for coupled translational and rotational vibrations. Mechanical Systems and Signal Processing, 149, 107340(2021) [69] YAO, Y. H., LI, H. G., LI, Y., and WANG, X. J. Analytical and experimental investigation of a high-static-low-dynamic stiffness isolator with cam-roller-spring mechanism. International Journal of Mechanical Sciences, 186, 134-142(2020) [70] YAO, Y. H., WANG, X. J., and LI, H. G. Design and analysis of a high-static-low-dynamic stiffness isolator using the cam-roller-spring mechanism. Journal of Vibration and Acoustics, 142, 1-24(2020) [71] YE, K., JI, J. C., and BROWN, T. Design of a quasi-zero stiffness isolation system for supporting different loads. Journal of Sound and Vibration, 471, 115198(2020) [72] ROBERTSON, W. S., KIDNER, M. R. F., CAZZOLATO, B. S., and ZANDER, A. C. Theoretical design parameters for a quasi-zero stiffness magnetic spring for vibration isolation. Journal of Sound and Vibration, 326, 88-103(2009) [73] WU, W. J., CHEN, X. D., and SHAN, Y. H. Analysis and experiment of a vibration isolator using a novel magnetic spring with negative stiffness. Journal of Sound and Vibration, 333, 2958-2970(2014) [74] ZHENG, Y. S., ZHANG, X. N., LUO, Y. J., YAN, B., and MA, C. C. Design and experiment of a high-static-low-dynamic stiffness isolator using a negative stiffness magnetic spring. Journal of Sound and Vibration, 360, 31-52(2016) [75] DONG, G. X., ZHANG, X. N., LUO, Y. J., ZHANG, Y. H., and XIE, S. L. Analytical study of the low frequency multi-direction isolator with high-static-low-dynamic stiffness struts and spatial pendulum. Mechanical Systems and Signal Processing, 110, 521-539(2018) [76] DONG, G. X., ZHANG, X. N., XIE, S. L., YAN, B., and LUO, Y. J. Simulated and experimental studies on a high-static-low-dynamic stiffness isolator using magnetic negative stiffness spring. Mechanical Systems and Signal Processing, 86, 188-203(2017) [77] ZHENG, Y. S., ZHANG, X. N., LUO, Y. J., ZHANG, Y. H., and XIE, S. L. Analytical study of a quasi-zero stiffness coupling using a torsion magnetic spring with negative stiffness. Mechanical Systems and Signal Processing, 100, 135-151(2018) [78] ZHOU, J. X., WANG, K., XU, D. L., OUYANG, H. J., and FU, Y. M. Vibration isolation in neonatal transport by using a quasi-zero-stiffness isolator. Journal of Vibration and Control, 24, 3278-3291(2018) [79] WANG, Q., ZHOU, J. X., XU, D. L., and OUYANG, H. J. Design and experimental investigation of ultra-low frequency vibration isolation during neonatal transport. Mechanical Systems and Signal Processing, 139, 106633(2020) [80] ZHU, T., CAZZOLATO, B., ROBERTSON, W. S. P., and ZANDER, A. Vibration isolation using six degree-of-freedom quasi-zero stiffness magnetic levitation. Journal of Sound and Vibration, 358, 48-73(2015) [81] KAMARUZAMAN, N. A., ROBERTSON, W. S. P., GHAYESH, M. H., CAZZOLATO, B. S., and ZANDER, A. C. Six degree of freedom quasi-zero stiffness magnetic spring with active control:theoretical analysis of passive versus active stability for vibration isolation. Journal of Sound and Vibration, 502, 116086(2021) [82] LIU, C. R., ZHAO, R., YU, K. P., and LIAO, B. P. In-plane quasi-zero-stiffness vibration isolator using magnetic interaction and cables:theoretical and experimental study. Applied Mathematical Modelling, 96, 497-522(2021) |
[1] | Guoxin JIN, Zhenghao WANG, Tianzhi YANG. Cascaded quasi-zero stiffness nonlinear low-frequency vibration isolator inspired by human spine [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(6): 813-824. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||