[1] SUN, W., MA, W., ZHANG, F., HONG, W., and LI, B. Snap-through path in a bistable dielectric elastomer actuator. Applied Mathematics and Mechanics] (English Edition), 43(8), 1159-1170(2022) https://doi.org/10.1007/s10483-022-2888-6 [2] YIN, Y., ZHAO, D., LIU, J., and XU, Z. Nonlinear dynamic analysis of dielectric elastomer membrane with electrostriction. Applied Mathematics and Mechanics (English Edition), 43(6), 793-812(2022) https://doi.org/10.1007/s10483-022-2853-9 [3] GUO, Z., NI, Q., CHEN, W., DAI, H., and WANG, L. Dynamic analysis and regulation of the flexible pipe conveying fluid with a hard-magnetic soft segment. Applied Mathematics and Mechanics (English Edition), 43(9), 1415-1430(2022) https://doi.org/10.1007/s10483-022-2901-9 [4] LI, C., LAU, G. C., YUAN, H., AGGARWAL, A., DOMINGUEZ, V. L., LIU, S., SAI, H., PALMER, L. C., SATHER, N. A., PEARSON, T. J., FREEDMAN, D. E., AMIRI, P. K., CRUZ, M. O. D. L., and STUPP, S. I. Fast and programmable locomotion of hydrogel-metal hybrids under light and magnetic fields. Science Robotics, 5(49), eabb9822(2020) [5] CIANCHETTI, M., LASCHI, C., MENCIASSI, A., and DARIO, P. Biomedical applications of soft robotics. Nature Reviews Materials, 3(6), 143-153(2018) [6] BAKHTIYARI, A., BAGHANI, M., and SOHRABPOUR, S. An investigation on multilayer shape memory polymers under finite bending through nonlinear thermo-visco-hyperelasticity. Applied Mathematics and Mechanics (English Edition), 44(1), 73-88(2023) https://doi.org/10.1007/s10483-023-2952-6 [7] LI, Y., CHEN, Y., REN, T., LI, Y., and CHOI, S. H. Precharged pneumatic soft actuators and their applications to untethered soft robots. Soft Robotics, 5(5), 567-575(2018) [8] LI, T., LI, G., LIANG, Y., CHENG, T., DAI, J., YANG, X., LIU, B., ZENG, Z., HUANG, Z., LUO, Y., XIE, T., and YANG, W. Fast-moving soft electronic fish. Science Advances, 3(4), e1602045(2017) [9] LI, G., CHEN, X., ZHOU, F., LIANG, Y., XIAO, Y., CAO, X., ZHANG, Z., ZHANG, M., WU, B., YIN, S., XU, Y., FAN, H., CHEN, Z., SONG, W., YANG, W., PAN, B., HOU, J., ZOU, W., HE, S., YANG, X., MAO, G., JIA, Z., ZHOU, H., LI, T., QU, S., XU, Z., HUANG, Z., LUO, Y., XIE, T., GU, J., ZHU, S., and YANG, W. Self-powered soft robot in the Mariana Trench. nature, 591(7848), 66-71(2021) [10] CHEN, J., YANG, S., LI, Y., HUANG, Y., and YIN, Z. Active curved surface deforming of flexible conformal electronics by multi-fingered actuator. Robotics and Computer-Integrated Manufacturing, 64, 101942(2020) [11] ZHOU, C., YANG, Y., WANG, J., WU, Q., GU, Z., ZHOU, Y., LIU, X., YANG, Y., TANG, H., LING, Q., WANG, L., and ZANG, J. Ferromagnetic soft catheter robots for minimally invasive bioprinting. Nature Communications, 12(1), 1-12(2021) [12] ILAMI, M., BAGHERI, H., AHMED, R., SKOWRONEK, E. O., and MARVI, H. Materials, actuators, and sensors for soft bioinspired robots. Advanced Materials, 33(19), 2003139(2021) [13] RIGBI, Z. and JILKEN, L. The response of an elastomer filled with soft ferrite to mechanical and magnetic influences. Journal of Magnetism and Magnetic Materials, 37(3), 267-276(1983) [14] BORCEA, L. and BRUNO, O. On the magneto-elastic properties of elastomer-ferromagnet composites. Journal of the Mechanics and Physics of Solids, 49(12), 2877-2919(2001) [15] HU, W., LUM, G. Z., MASTRANGELI, M., and SITTI, M. Small-scale soft-bodied robot with multimodal locomotion. nature, 554(7690), 81-85(2018) [16] KIM, Y., YUK, H., ZHAO, R., CHESTER, S. A., and ZHAO, X. Printing ferromagnetic domains for untethered fast-transforming soft materials. nature, 558(7709), 274-279(2018) [17] KUANG, X., WU, S., ZE, Q., YUE, L., JIN, Y., MONTGOMERY, S. M., YANG, F., QI, H. J., and ZHAO, R. Magnetic dynamic polymers for modular assembling and reconfigurable morphing architectures. Advanced Materials, 33(30), 2102113(2021) [18] WU, S., ZE, Q., DAI, J., UDIPI, N., PAULINO, G. H., and ZHAO, R. Stretchable origami robotic arm with omnidirectional bending and twisting. Proceedings of the National Academy of Sciences, 118(36), e2110023118(2021) [19] ALAPAN, Y., KARACAKOL, A. C., GUZELHAN, S. N., ISIK, I., and SITTI, M. Reprogrammable shape morphing of magnetic soft machines. Science Advances, 6(38), eabc6414(2020) [20] WANG, X., MAO, G., GE, J., DRACK, M., CAÑÓN BERMÚDEZ, G. S., WIRTHL, D., ILLING, R., KOSUB, T., BISCHOFF, L., WANG, C., FASSBENDER, J., KALTENBRUNNER, M., and MAKAROV, D. Untethered and ultrafast soft-bodied robots. Communications Materials, 1(1), 1-10(2020) [21] ZHAO, R., KIM, Y., CHESTER, S. A., SHARMA, P., and ZHAO, X. Mechanics of hard-magnetic soft materials. Journal of the Mechanics and Physics of Solids, 124, 244-263(2019) [22] YAN, D., ABBASI, A., and REIS, P. M. A comprehensive framework for hard-magnetic beams: reduced-order theory, 3D simulations, and experiments. International Journal of Solids and Structures, 257, 111319(2022) [23] LUCARINI, S., HOSSAIN, M., and GARCIA-GONZALEZ, D. Recent advances in hard-magnetic soft composites: synthesis, characterisation, computational modelling, and applications. Composite Structures, 279, 114800(2022) [24] CHEN, W. and WANG, L. Theoretical modeling and exact solution for extreme bending deformation of hard-magnetic soft beams. Journal of Applied Mechanics--Transactions of the ASME, 87(4), 041002(2020) [25] WANG, L., KIM, Y., GUO, C. F., and ZHAO, X. Hard-magnetic elastica. Journal of the Mechanics and Physics of Solids, 142, 104045(2020) [26] CHEN, W., YAN, Z., and WANG, L. Complex transformations of hard-magnetic soft beams by designing residual magnetic flux density. Soft Matter, 16(27), 6379-6388(2020) [27] CHEN, W., YAN, Z., and WANG, L. On mechanics of functionally graded hard-magnetic soft beams. International Journal of Engineering Science, 157, 103391(2020) [28] WANG, L., ZHENG, D., HARKER, P., PATEL, A. B., GUO, C. F., and ZHAO, X. Evolutionary design of magnetic soft continuum robots. Proceedings of the National Academy of Sciences, 118(21), e2021922118(2021) [29] CHEN, W., WANG, L., and PENG, Z. R. A magnetic control method for large-deformation vibration of cantilevered pipe conveying fluid. Nonlinear Dynamics, 105(2), 1459-1481(2021) [30] CHEN, W., WANG, L., YAN, Z., and LUO, B. Three-dimensional large-deformation model of hard-magnetic soft beams. Composite Structures, 266, 113822(2021) [31] SANO, T. G., PEZZULLA, M., and REIS, P. M. A Kirchhoff-like theory for hard magnetic rods under geometrically nonlinear deformation in three dimensions. Journal of the Mechanics and Physics of Solids, 160, 104739(2022) [32] GOLDSTEIN, H., POOLE, C. P., and SAFKO, J. L. Classical Mechanics, 3rd ed., Addison-Wesley, New York (2001) [33] HEARD, W. B. Rigid Body Mechanics: Mathematics, Physics and Applications, John Wiley & Sons, Weinheim (2006) [34] CHELNOKOV, Y. N. Quaternion methods and models of regular celestial mechanics and astrodynamics. Applied Mathematics and Mechanics (English Edition), 43(1), 21-80(2022) https://doi.org/10.1007/s10483-021-2797-9 [35] COTTANCEAU, E., THOMAS, O., VÉRON, P., ALOCHET, M., and DELIGNY, R. A finite element/quaternion/asymptotic numerical method for the 3D simulation of flexible cables. Finite Elements in Analysis and Design, 139, 14-34(2018) [36] GHOSH, S. and ROY, D. Consistent quaternion interpolation for objective finite element approximation of geometrically exact beam. Computer Methods in Applied Mechanics and Engineering, 198(3-4), 555-571(2008) [37] MALIKAN, M. and EREMEYEV, V. A. Flexomagneticity in buckled shear deformable hard-magnetic soft structures. Continuum Mechanics and Thermodynamics, 34(1), 1-16(2022) [38] CHEN, W. and WANG, L. Large bending deformation of a cantilevered soft beam under external load: the applicability of inextensibility assumption of the centerline. Current Mechanics and Advanced Materials, 1(1), 24-38(2021) [39] NAYFEH, A. H. and PAI, P. F. Linear and Nonlinear Structural Mechanics, 1st ed., John Wiley & Sons, Weinheim, 195-199, 226-234(2004) [40] PAI, P. F. and PALAZOTTO, A. Large-deformation analysis of flexible beams. International Journal of Solids and Structures, 33(9), 1335-1353(1996) [41] WANG, X. C. Finite Element Method (in Chinese), 1st ed., Tsinghua University Press, Beijing, 272-277(2003) [42] DING, G. T. Two ways to introduce undertermined multipliers to constrained mechanical systems (in Chinese). Mechanics in Engineering, 38(1), 83-86(2016) [43] CHEN, W., DAI, H. L., JIA, Q. Q., and WANG, L. Geometrically exact equation of motion for large-amplitude oscillation of cantilevered pipe conveying fluid. Nonlinear Dynamics, 98(3), 2097-2114(2019) [44] CHEN, W., DAI, H. L., and WANG, L. Three-dimensional dynamical model for cantilevered pipes conveying fluid under large deformation. Journal of Fluids and Structures, 105, 103329(2021) [45] CHEN, W., ZHOU, K., WANG, L., and YIN, Z. Geometrically exact model and dynamics of cantilevered curved pipe conveying fluid. Journal of Sound and Vibration, 534, 117074(2022) [46] CHEN, W., WANG, L., and YAN, Z. On the dynamics of curved magnetoactive soft beams. International Journal of Engineering Science, 183, 103792(2023) [47] NI, Q., WANG, Y. K., TANG, M., LUO, Y. Y., YAN, H., and WANG, L. Nonlinear impacting oscillations of a fluid-conveying pipe subjected to distributed motion constraints. Nonlinear Dynamics, 81(1), 893-906(2015) [48] DAI, H. L., HE, Y. X., ZHOU, K., PENG, Z. R., WANG, L., and HAGEDORN, P. Utilization of nonlinear vibrations of soft pipe conveying fluid for driving underwater bio-inspired robot. Applied Mathematics and Mechanics (English Edition), 43(7), 1109-1124(2022) https://doi.org/10.1007/s10483-022-2866-7 [49] HAO, M. Y., DING, H., MAO, X. Y., and CHEN, L. Q. Stability and nonlinear response analysis of parametric vibration for elastically constrained pipes conveying pulsating fluid. Acta Mechanica Solida Sinica (2022) https://doi.org/10.1007/s10338-022-00370-z [50] YUAN, J. R. and DING, H. Dynamic model of curved pipe conveying fluid based on the absolute nodal coordinate formulation. International Journal of Mechanical Sciences, 232, 107625(2022) [51] WEI, S., YAN, X., FAN, X., MAO, X. Y., DING, H., and CHEN, L. Q. Vibration of fluid-conveying pipe with nonlinear supports at both ends. Applied Mathematics and Mechanics (English Edition), 43(6), 845-862(2022) https://doi.org/10.1007/s10483-022-2857-6 |