Applied Mathematics and Mechanics (English Edition) ›› 2023, Vol. 44 ›› Issue (7): 1125-1150.doi: https://doi.org/10.1007/s10483-023-2996-8
• Articles • Previous Articles Next Articles
H. Q. YOU1, X. XU2, Y. YU1, S. SILLING3, M. D'ELIA4, J. FOSTER2
Received:
2022-12-17
Revised:
2023-05-17
Online:
2023-07-01
Published:
2023-07-05
Contact:
Y. YU, E-mail:yuy214@lehigh.edu
2010 MSC Number:
H. Q. YOU, X. XU, Y. YU, S. SILLING, M. D'ELIA, J. FOSTER. Towards a unified nonlocal, peridynamics framework for the coarse-graining of molecular dynamics data with fractures. Applied Mathematics and Mechanics (English Edition), 2023, 44(7): 1125-1150.
[1] ZOHDI, T. and STEIGMANN, D. The toughening effect of microscopic filament misalignment on macroscopic ballistic fabric response. International Journal of Fracture, 118(4), 71-76(2002) [2] WRIGGERS, P., ZAVARISE, G., and ZOHDI, T. A computational study of interfacial debonding damage in fibrous composite materials. Computational Materials Science, 12(1), 39-56(1998) [3] PRUDENCIO, E. E., BAUMAN, P. T., WILLIAMS, S., FAGHIHI, D., RAVI-CHANDAR, K., and ODEN, J. T. A dynamic data driven application system for real-time monitoring of stochastic damage. Procedia Computer Science, 18, 2056-2065(2013) [4] SU, Z., YE, L., and LU, Y. Guided Lamb waves for identification of damage in composite structures: a review. Journal of Sound and Vibration, 295, 753-780(2006) [5] 2014 technical strategic plan. Technical Report, The Air Force Office of Scientific Research, Arlington, Virginia (2014) [6] TALREJA, R. and VARNA, J. Modeling Damage, Fatigue and Failure of Composite Materials, Elsevier, Cambridge (2015) [7] SORIĆ, J., WRIGGERS, P., and ALLIX, O. Multiscale Modeling of Heterogeneous Structures, Springer Cham, Switzerland (2018) [8] PIJAUDIER-CABOT, G. and DUFOUR, F. Damage Mechanics of Cementitious Materials and Structures, John Wiley & Sons, U.S.A. (2013) [9] MOURLAS, C., MARKOU, G., and PAPADRAKAKIS, M. Accurate and computationally efficient nonlinear static and dynamic analysis of reinforced concrete structures considering damage factors. Engineering Structures, 178, 258-285(2019) [10] MARKOU, G., GARCIA, R., MOURLAS, C., GUADAGNINI, M., PILAKOUTAS, K., and PAPADRAKAKIS, M. A new damage factor for seismic assessment of deficient bare and FRP-retrofitted RC structures. Engineering Structures, 248, 113152(2021) [11] ZOHDI, T. I. Homogenization methods and multiscale modeling. Encyclopedia of Computational Mechanics Second Edition, John Wiley & Sons, U.S.A., 1-24(2017) [12] BENSOUSSAN, A., LIONS, J. L., and PAPANICOLAOU, G. Asymptotic Analysis for Periodic Structures, American Mathematical Society, U.S.A. (2011) [13] WEINAN, E. and ENGQUIST, B. Multiscale modeling and computation. Notices of the AMS, 50(9), 1062-1070(2003) [14] EFENDIEV, Y., GALVIS, J., and HOU, T. Y. Generalized multiscale finite element methods (GMsFEM). Journal of Computational Physics, 251, 116-135(2013) [15] JUNGHANS, C., PRAPROTNIK, M., and KREMER, K. Transport properties controlled by a thermostat: an extended dissipative particle dynamics thermostat. Soft Matter, 4(1), 156-161(2008) [16] KUBO, R. The fluctuation-dissipation theorem. Reports on Progress in Physics, 29(1), 255-284(1966) [17] SANTOSA, F. and SYMES, W. W. A dispersive effective medium for wave propagation in periodic composites. SIAM Journal on Applied Mathematics, 51(4), 984-1005(1991) [18] DOBSON, M., LUSKIN, M., and ORTNER, C. Sharp stability estimates for the force-based quasicontinuum approximation of homogeneous tensile deformation. Multiscale Modeling & Simulation, 8(3), 782-802(2010) [19] HUGHES, T. J., WELLS, G. N., and WRAY, A. A. Energy transfers and spectral eddy viscosity in large-eddy simulations of homogeneous isotropic turbulence: comparison of dynamic Smagorinsky and multiscale models over a range of discretizations. Physics of Fluids, 16(11), 4044-4052(2004) [20] MOËS, N., ODEN, J. T., VEMAGANTI, K., and REMACLE, J. F. Simplified methods and a posteriori error estimation for the homogenization of representative volume elements (RVE). Computer Methods in Applied Mechanics and Engineering, 176, 265-278(1999) [21] ORTIZ, M. A method of homogenization of elastic media. International Journal of Engineering Science, 25(7), 923-934(1987) [22] DU, Q., ENGQUIST, B., and TIAN, X. Multiscale modeling, homogenization and nonlocal effects: mathematical and computational issues. Contemporary Mathematics, American Mathematical Society, U.S.A. (2020) [23] SILLING, S. A. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 48(1), 175-209(2000) [24] BERAN, M. and MCCOY, J. Mean field variations in a statistical sample of heterogeneous linearly elastic solids. International Journal of Solids and Structures, 6(8), 1035-1054(1970) [25] CHEREDNICHENKO, K., SMYSHLYAEV, V. P., and ZHIKOV, V. Non-local homogenised limits for composite media with highly anisotropic periodic fibres. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 136(1), 87-114(2006) [26] KARAL, F. C., JR and KELLER, J. B. Elastic, electromagnetic, and other waves in a random medium. Journal of Mathematical Physics, 5(4), 537-547(1964) [27] RAHALI, Y., GIORGIO, I., GANGHOFFER, J., and DELL'ISOLA, F. Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices. International Journal of Engineering Science, 97, 148-172(2015) [28] SMYSHLYAEV, V. P. and CHEREDNICHENKO, K. D. On rigorous derivation of strain gradient effects in the overall behaviour of periodic heterogeneous media. Journal of the Mechanics and Physics of Solids, 48, 1325-1357(2000) [29] WILLIS, J. R. The nonlocal influence of density variations in a composite. International Journal of Solids and Structures, 21(7), 805-817(1985) [30] ERINGEN, A. C. and EDELEN, D. G. B. On nonlocal elasticity. International Journal of Engineering Science, 10(3), 233-248(1972) [31] BOBARU, F., FOSTER, J. T., GEUBELLE, P. H., and SILLING, S. A. Handbook of Peridynamic Modeling, CRC Press, Boca Raton (2016) [32] BAŽANT, Z. P. and JIRÁSEK, M. Nonlocal integral formulations of plasticity and damage: survey of progress. Journal of Engineering Mechanics, 128(11), 1119-1149(2002) [33] DU, Q., GUNZBURGER, M., LEHOUCQ, R. B., and ZHOU, K. A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Mathematical Models and Methods in Applied Sciences, 23(3), 493-540(2013) [34] SELESON, P., PARKS, M. L., GUNZBURGER, M., and LEHOUCQ, R. Peridynamics as an upscaling of molecular dynamics. Multiscale Modeling & Simulation, 8(1), 204-227(2009) [35] PARKS, M. L., LEHOUCQ, R. B., PLIMPTON, S. J., and SILLING, S. A. Implementing peridynamics within a molecular dynamics code. Computer Physics Communications, 179(11), 777-783 [36] ZIMMERMANN, M. A Continuum Theory with Long-Range Forces for Solids, Ph.D.dissertation, Massachusetts Institute of Technology (2005) [37] EMMRICH, E. and WECKNER, O. Analysis and numerical approximation of an integro-differential equation modeling non-local effects in linear elasticity. Mathematics and Mechanics of Solids, 12(4), 363-384(2007) [38] DU, Q. and ZHOU, K. Mathematical analysis for the peridynamic nonlocal continuum theory. ESAIM: Mathematical Modelling and Numerical Analysis, 45(2), 217-234(2011) [39] DU, Q., TAO, Y., and TIAN, X. A peridynamic model of fracture mechanics with bond-breaking. Journal of Elasticity, 132(2), 197-218(2018) [40] PRAKASH, N. and SEIDEL, G. D. Electromechanical peridynamics modeling of piezoresistive response of carbon nanotube nanocomposites. Computational Materials Science, 113, 154-170(2016) [41] PRAKASH, N. and SEIDEL, G. D. Computational electromechanical peridynamics modeling of strain and damage sensing in nanocomposite bonded explosive materials (NCBX). Engineering Fracture Mechanics, 177, 180-202(2017) [42] SILLING, S. A. Propagation of a stress pulse in a heterogeneous elastic bar. Journal of Peridynamics and Nonlocal Modeling, 3(3), 255-275(2021) [43] SILLING, S. A., D'ELIA, M., YU, Y., YOU, H., and FERMEN-COKER, M. Peridynamic model for single-layer graphene obtained from coarse-grained bond forces. Journal of Peridynamics and Nonlocal Modeling, 1-22(2022) https://doi.org/10.1007/s42102-021-00075-w [44] YOU, H., YU, Y., SILLING, S., and D'ELIA, M. Data-driven learning of nonlocal models: from high-fidelity simulations to constitutive laws. arXiv Preprint, arXiv:2012.04157(2020) https://doi.org/10.48550/arXiv.2012.04157 [45] YOU, H., YU, Y., TRASK, N., GULIAN, M., and D'ELIA, M. Data-driven learning of nonlocal physics from high-fidelity synthetic data. Computer Methods in Applied Mechanics and Engineering, 374, 113553(2021) [46] YOU, H., YU, Y., SILLING, S., and D'ELIA, M. A data-driven peridynamic continuum model for upscaling molecular dynamics. Computer Methods in Applied Mechanics and Engineering, 389, 114400(2022) [47] XU, X., D'ELIA, M., and FOSTER, J. T. A machine-learning framework for peridynamic material models with physical constraints. Computer Methods in Applied Mechanics and Engineering, 386, 114062(2021) [48] XU, X., D'ELIA, M., GLUSA, C., and FOSTER, J. T. Machine-learning of nonlocal kernels for anomalous subsurface transport from breakthrough curves. arXiv Preprint, arXiv:2201.11146(2022) https://doi.org/10.48550/arXiv.2201.11146 [49] ZHANG, L., YOU, H., and YU, Y. MetaNOR: a meta-learnt nonlocal operator regression approach for metamaterial modeling. MRS Communications, 12, 662-677(2022) [50] LU, F., AN, Q., and YU, Y. Nonparametric learning of kernels in nonlocal operators. arXiv Preprint, arXiv:2205.11006(2022) https://doi.org/10.48550/arXiv.2205.11006 [51] MURDOCH, A. and BEDEAUX, D. Continuum equations of balance via weighted averages of microscopic quantities. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 445, 157-179(1994) [52] LIU, X. D., OSHER, S., and CHAN, T. Weighted essentially non-oscillatory schemes. Journal of Computational Physics, 115(1), 200-212(1994) [53] JIANG, G. S. and SHU, C. W. Efficient implementation of weighted ENO schemes. Journal of Computational Physics, 126(1), 202-228(1996) [54] SILLING, S. A., EPTON, M., WECKNER, O., XU, J., and ASKARI, E. Peridynamic states and constitutive modeling. Journal of Elasticity, 88(2), 151-184(2007) [55] SILLING, S. A. and LEHOUCQ, R. B. Peridynamic theory of solid mechanics. Advances in Applied Mechanics, 44, 73-168(2010) [56] LEHOUCQ, R. B. and SILLING, S. A. Force flux and the peridynamic stress tensor. Journal of the Mechanics and Physics of Solids, 56(4), 1566-1577(2008) [57] SILLING, S., LITTLEWOOD, D., and SELESON, P. Variable horizon in a peridynamic medium. Journal of Mechanics of Materials and Structures, 10(5), 591-612(2015) [58] SILLING, S. A., EPTON, M., WECKNER, O., XU, J., and ASKARI, E. Peridynamic states and constitutive modeling. Journal of Elasticity, 88(2), 151-184(2007) [59] EMMRICH, E. and WECKNER, O. On the well-posedness of the linear peridynamic model and its convergence towards the Navier equation of linear elasticity. Communications in Mathematical Sciences, 5(4), 851-864(2007) [60] MENGESHA, T. and DU, Q. Nonlocal constrained value problems for a linear peridynamic Navier equation. Journal of Elasticity, 116(1), 27-51(2014) [61] MENGESHA, T. and DU, Q. The bond-based peridynamic system with Dirichlet-type volume constraint. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 144(1), 161-186(2014) [62] QIN, H., SUN, Y., LIU, J. Z., LI, M., and LIU, Y. Negative Poisson's ratio in rippled graphene. Nanoscale, 9(12), 4135-4142(2017) [63] JIANG, J. W., CHANG, T., GUO, X., and PARK, H. S. Intrinsic negative Poisson's ratio for single-layer graphene. Nano Letters, 16(8), 5286-5290(2016) [64] TRASK, N., YOU, H., YU, Y., and PARKS, M. L. An asymptotically compatible meshfree quadrature rule for nonlocal problems with applications to peridynamics. Computer Methods in Applied Mechanics and Engineering, 343, 151-165(2019) [65] YU, Y., YOU, H., and TRASK, N. An asymptotically compatible treatment of traction loading in linearly elastic peridynamic fracture. Computer Methods in Applied Mechanics and Engineering, 377, 113691(2021) [66] FAN, Y., TIAN, X., YANG, X., LI, X., WEBSTER, C., and YU, Y. An asymptotically compatible probabilistic collocation method for randomly heterogeneous nonlocal problems. Journal of Computational Physics, 465, 111376(2022) [67] YOU, H., LU, X., TASK, N., and YU, Y. An asymptotically compatible approach for Neumann-type boundary condition on nonlocal problems. ESAIM: Mathematical Modelling and Numerical Analysis, 54(4), 1373-1413(2020) [68] YOU, H., YU, Y., and KAMENSKY, D. An asymptotically compatible formulation for local-to-nonlocal coupling problems without overlapping regions. Computer Methods in Applied Mechanics and Engineering, 366, 113038(2020) [69] FOSS, M., RADU, P., and YU, Y. Convergence analysis and numerical studies for linearly elastic peridynamics with Dirichlet-type boundary conditions. Journal of Peridynamics and Nonlocal Modeling, 1-36(2022) https://doi.org/10.1007/s42102-021-00074-x [70] FAN, Y., YOU, H. Q., and YU, Y. OBMeshfree: an optimization-based meshfree solver for nonlocal diffusion and peridynamics models. arXiv Preprint, arXiv:2211.14953(2022) https://doi.org/10.48550/arXiv.2211.14953 [71] FAN, Y., YOU, H., TIAN, X., YANG, X., LI, X., PRAKASH, N., and YU, Y. A meshfree peridynamic model for brittle fracture in randomly heterogeneous materials. Computer Methods in Applied Mechanics and Engineering, 399, 115340(2022) [72] ZHANG, H. and QIAO, P. A state-based peridynamic model for quantitative fracture analysis. International Journal of Fracture, 211, 217-235(2018) [73] YOU, H., YU, Y., TRASK, N., GULIAN, M., and D'ELIA, M. Data-driven learning of robust nonlocal physics from high-fidelity synthetic data. Computer Methods in Applied Mechanics and Engineering, 374, 113553(2021) [74] TERSOFF, J. Empirical interatomic potential for carbon, with applications to amorphous carbon. Physical Review Letters, 61(25), 2879-2882(1988) [75] ZHAO, H. and ALURU, N. R. Temperature and strain-rate dependent fracture strength of graphene. Journal of Applied Physics, 108(6), 064321(2010) [76] VOTER, A. F. Hyperdynamics: accelerated molecular dynamics of infrequent events. Physical Review Letters, 78(20), 3908-3911(1997) [77] KOVACHKI, N., LI, Z., LIU, B., AZIZZADENESHELI, K., BHATTACHARYA, K., STUART, A., and ANANDKUMAR, A. Neural operator: learning maps between function spaces with applications to PDEs. Journal of Machine Learning Research, 24(89), 1-97(2023) [78] YOU, H., ZHANG, Q., ROSS, C. J., LEE, C. H., HSU, M. C., and YU, Y. A physics-guided neural operator learning approach to model biological tissues from digital image correlation measurements. Journal of Biomechanical Engineering, 144, 121012(2022) [79] YOU, H., YU, Y., D'ELIA, M., GAO, T., and SILLING, S. Nonlocal kernel network (NKN): a stable and resolution-independent deep neural network. Journal of Computational Physics, 469, 111536(2022) [80] YOU, H., ZHANG, Q., ROSS, C. J., LEE, C. H., and YU, Y. Learning deep implicit Fourier neural operators (IFNOs) with applications to heterogeneous material modeling. Computer Methods in Applied Mechanics and Engineering, 398, 115296(2022) |
[1] | Yanda WANG, Yanping LIAN, Zhidong WANG, Chunpeng WANG, Daining FANG. A novel triple periodic minimal surface-like plate lattice and its data-driven optimization method for superior mechanical properties [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 217-238. |
[2] | M. KIM, G. LIN. Peri-Net-Pro: the neural processes with quantified uncertainty for crack patterns [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(7): 1085-1100. |
[3] | Zeyang CHI, Jinxing LIU, A. K. SOH. On complete and micropolar-based incomplete strain gradient theories for periodic lattice structures [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(10): 1651-1674. |
[4] | Chunyu ZHANG, Biao WANG. Influence of nonlinear spatial distribution of stress and strain on solving problems of solid mechanics [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(9): 1355-1366. |
[5] | Yongbin WANG, Huadong YONG, Youhe ZHOU. Two-step homogenization for the effective thermal conductivities of twisted multi-filamentary superconducting strand [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(5): 689-708. |
[6] | Chi XU, Yang LI, Mingyue LU, Zhendong DAI. Buckling analysis of functionally graded nanobeams under non-uniform temperature using stress-driven nonlocal elasticity [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(3): 355-370. |
[7] | Chuansai ZHOU, Haochen LI, Chen YU, Jiangjiang XIA, Pingwen ZHANG. A station-data-based model residual machine learning method for fine-grained meteorological grid prediction [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(2): 155-166. |
[8] | Erhui WANG, Xuelan ZHANG, Liancun ZHENG, Chang SHU. Machine learning of synaptic structure with neurons to promote tumor growth [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(11): 1697-1706. |
[9] | F. E. ÁLVAREZ-BORGES, J. BRAVO-CASTILLERO, M. E. CRUZ, R. GUINOVART-DÍAZ, L. D. PÉREZ-FERNÁNDEZ, R. RODRÍGUEZ-RAMOS, F. J. SABINA. Reiterated homogenization of a laminate with imperfect contact: gain-enhancement of effective properties [J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(8): 1119-1146. |
[10] | Ning LIU, Dahsin LIU, Wu ZHOU. Peridynamic modelling of impact damage in three-point bending beam with offset notch [J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(1): 99-110. |
[11] | A. MOHYEDDIN;A. FEREIDOON. Modeling of anisotropic polydispersed composites by progressive micromechanical approach [J]. Applied Mathematics and Mechanics (English Edition), 2013, 34(3): 363-370. |
[12] | DENG Ming-Xiang;FENG Yong-Ping. Two-scale finite element method for piezoelectric problem in periodic structure [J]. Applied Mathematics and Mechanics (English Edition), 2011, 32(12): 1525-1540. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||