[1] ZHANG, S. C., LEI, X., ZHOU, Y. S., and XU, G. Q. Numerical simulation of hydraulic fracture propagation in tight oil reservoirs by volumetric fracturing. Petroleum Science, 12(4), 674-682(2015) [2] LI, S. B., LI, X., and ZHANG, D. X. A fully coupled thermo-hydro-mechanical, three-dimensional model for hydraulic stimulation treatments. Journal of Natural Gas Science and Engineering, 34, 64-84(2016) [3] TANG, H. Y., WANG, S. H., ZHANG, R. H., LI, S. B., ZHANG, L. H., and WU, Y. S. Analysis of stress interference among multiple hydraulic fractures using a fully three-dimensional displacement discontinuity method. Journal of Petroleum Science and Engineering, 179, 378-393(2019) [4] GUO, D. L., JI, L. J., ZHAO, J. Z., and LIU, C. Q. 3-D fracture propagation simulation and production prediction in coalbed. Applied Mathematics and Mechanics (English Edition), 22(4), 385-393(2001) https://doi.org/10.1023/A:1016337331556 [5] WENG, X. W., KRESS, O., COHEN, C., WU, R. T., and GU, H. R. Modeling of hydraulicfracture-network propagation in a naturally fractured formation. SPE Production and Operation, 26(4), 368-380(2011) [6] KRESS, O., WENG, X. W., GU, H. R., and WU, R. T. Numerical modeling of hydraulic fractures interaction in complex naturally fractured formations. Rock Mechanics and Rock Engineering, 46, 555-568(2013) [7] WONG, S. W., GEILIKMAN, M., and XU, G. S. Interaction of multiple hydraulic fractures in horizontal wells. SPE Middle East Unconventional Gas Conference and Exhibition, SPE-167161-MS, Muscat (2013) [8] WU, K. and OLSON, J. E. Simultaneous multifracture treatments:fully coupled fluid flow and fracture mechanics for horizontal wells. SPE Journal, 20, 337-346(2014) [9] ZHAO, J. Z., CHEN, X. Y., LI, Y. M., and FU, B. Simulation of simultaneous propagation of multiple hydraulic fractures in horizontal wells. Journal of Petroleum Science and Engineering, 147, 788-800(2016) [10] CHEN, X. Y., LI, Y. M., ZHAO, J. Z., XU, W. X., and FU, D. Y. Numerical investigation for simultaneous growth of hydraulic fractures in multiple horizontal wells. Journal of Natural Gas Science and Engineering, 51, 44-52(2018) [11] CHENG, W., JIANG, G. S., XIE, J. Y., WEI, Z. J., ZHOU, Z. D., and LI, X. D. A simulation study comparing the Texas two-step and the multistage consecutive fracturing method. Petroleum Science, 16, 1121-1133(2019) [12] CHENG, W., LU, C. H., and XIAO, B. Perforation optimization of intensive-stage fracturing in a horizontal well using a coupled 3D-DDM fracture model. Energies, 14, 2393(2021) [13] YAO, J., ZENG, Q. D., HUANG, Z. Q., SUN, H., and ZHANG, L. Numerical modeling of simultaneous hydraulic fracturing in the mode of multi-well pads. Science China-Technological Sciences, 60(2), 232-242(2017) [14] ZHANG, F. S., HUANG, L. K., YANG, L., DONTSOV, E., WENG, D. W., LIANG, H. B., YIN, Z. R., and TANG, J. Z. Numerical investigation on the effect of depletion-induced stress reorientation on infill well hydraulic fracture propagation. Petroleum Science, 19, 296-308(2022) [15] WANG, X. L., SHI, F., LIU, H., and WU, H. A. Numerical simulation of hydraulic fracturing in orthotropic formation based on the extended finite element method. Journal of Natural Gas Science and Engineering, 33, 56-69(2016) [16] ZENG, Q. D., BO, L., LIU, W. Z., HUANG, Z. Q., and YAO, J. An investigation of hydraulic fracture propagation in multi-layered formation via the phase field method. Computers and Geotechnics, 156, 105258(2023) [17] ZENG, Q. D., YAO, J., and SHAO, J. F. An extended finite element solution for hydraulic fracturing with thermo-hydro-elastic-plastic coupling. Computer Methods in Applied Mechanics and Engineering, 364, 112967(2020) [18] SALIMZADEH, S., PALUSZNY, A., and ZIMMERMAN, R. W. Three-dimensional poroelastic effects during hydraulic fracturing in permeable rocks. International Journal of Solids and Structures, 108, 153-163(2017) [19] MCCLURE, M. W., BABAZADEH, M., SHIOZAWA, S., and HUANG, J. Fully coupled hydromechanical simulation of hydraulic fracturing in 3D discrete-fracture networks. SPE Journal, 21(4), 1302-1320(2016) [20] YAO, C., SHAO, J. F., JIANG, Q. H., and ZHOU, C. B. A new discrete method for modeling hydraulic fracturing in cohesive porous materials. Journal of Petroleum Science and Engineering, 180, 257-267(2019) [21] LIU, W. Z., ZENG, Q. D., and YAO, J. Numerical simulation of elasto-plastic hydraulic fracture propagation in deep reservoir coupled with temperature field. Journal of Petroleum Science and Engineering, 171, 115-126(2018) [22] KARIMI-FARD, M., DURLOFSKY, L. J., and AZIZ, K. An efficient discrete-fracture model applicable for general-purpose reservoir simulators. SPE Journal, 9(2), 227-236(2004) [23] LI, L. and LEE, S. Efficient field-scale simulation of black oil in a naturally fractured reservoir through discrete fracture networks and homogenized media. SPE Reservoir Evaluation and Engineering, 11(4), 750-758(2008) [24] SUN, H., YAO, J., GAO, S. H., FAN, D. Y., WANG, C. C., and SUN, Z. X. Numerical study of CO2 enhanced natural gas recovery and sequestration in shale gas reservoirs. International Journal of Greenhouse Gas Control, 19, 406-419(2013) [25] YUAN, B., SU, Y. L., MOGHANLOO, R. G., RUI, Z. H., WANG, W. D., and SHANG, Y. Y. A new analytical multi-linear solution for gas flow toward fractured horizontal wells with different fracture intensity. Journal of Natural Gas Science and Engineering, 23, 227-238(2015) [26] YUAN, J. W., JIANG, R. Z., and ZHANG, W. The workflow to analyze hydraulic fracture effect on hydraulic fractured horizontal well production in composite formation system. Advances in Geo-Energy Research, 2(3), 319-342(2018) [27] XU, Y. F., SHENG, G. L., ZHAO, H., HUI, Y. N., and GONG, J. A new approach for gas-water flow simulation in multi-fractured horizontal wells of shale gas reservoirs. Journal of Petroleum Science and Engineering, 199, 108292(2021) [28] SHARIFI, M., KELKAR, M., and KARKEVANDI-TALKHOONCHEH, A. A workflow for flow simulation in shale oil reservoirs:a case study in woodford shale. Advances in Geo-Energy Research, 5(4), 365-675(2021) [29] ZHANG, R. H., WU, J. F., ZHAO, Y. L., HE, X., and WANG, R. H. Numerical simulation of the feasibility of supercritical CO2 storage and enhanced shale gas recovery considering complex fracture networks. Journal of Petroleum Science and Engineering, 204, 108671(2021) [30] WAN, X. C., RASOULI, V., DAMJANC, B., YU, W., and LIU, W. Coupling of fracture model with reservoir simulation to simulate shale gas production with complex fractures and nanopores. Journal of Petroleum Science and Engineering, 193, 107422(2020) [31] ZHAO, Y. L., LU, G., ZHANG, L. H., WEI, Y. S., GUO, J. J., and CHANG, C. Numerical simulation of shale gas reservoirs considering discrete fracture network using a coupled multiple transport mechanisms and geomechanics model. Journal of Petroleum Science and Engineering, 195, 107588(2020) [32] ZHANG, R. H., ZHANG, L. H., TANG, H. Y., CHEN, S. N., ZHAO, Y. L., WU, J. F., and WANG, K. R. A simulator for production prediction of multistage fractured horizontal well in shale gas reservoir considering complex fracture geometry. Journal of Natural Gas Science and Engineering, 67, 14-29(2019) [33] WEI, S. M., XIA, Y., JIN, Y., CHEN, M., and CHEN, K. P. Quantitative study in shale gas behaviors using a coupled triple-continuum and discrete fracture model. Journal of Petroleum Science and Engineering, 174, 49-69(2019) [34] SANGNIMNUAN, A., LI, J., and WU, K. Development of efficiently coupled fluidflow/Geomechanics model to predict stress evolution in unconventional reservoirs with complexfracture geometry. SPE Journal, 23(3), 640-660(2018) [35] YAN, X., HUANG, Z. Q., YAO, J., LI, Y., FAN, D. Y., SUN, H., and ZHANG, K. An efficient numerical hybrid model for multiphase flow in deformable fractured-shale reservoirs. SPE Journal, 23(4), 1412-1437(2018) [36] LIU, L. J., LIU, Y., YAO, J., and HUANG, Z. Q. Efficient coupled multiphase-flow and geomechanics modeling of well performance and stress evolution in shale-gas reservoirs considering dynamic fracture properties. SPE Journal, 25(3), 1523-1542(2020) [37] CROUCH, S. L. and STARFIELD, A. M. Boundary Element Methods in Solid Mechanics, George Allen & Unwin, London (1983) [38] OLSON, J. E. Predicting fracture swarms-the influence of subcritical crack growth and the crack-tip process zone on joint spacing in rock. Geological Society of London Special Publications, 231(1), 73-88(2015) [39] DEHGHAN, A. N. An experimental investigation into the influence of pre-existing natural fracture on the behavior and length of propagating hydraulic fracture. Engineering Fracture Mechanics, 240, 107330(2020) [40] RENSHAW, C. E. and POLLARD, D. D. An experimentally verified criterion for propagation across unbounded frictional interfaces in Brittle, linear elastic materials. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 32, 237-249(1995) [41] ZHANG, J., LI, Y. W., PAN, Y. S., WANG, X. Y., YAN, M. S., SHI, X. D., ZHOU, X. J., and LI, H. L. Experiments and analysis on the influence of multiple closed cemented natural fractures on hydraulic fracture propagation in a tight sandstone reservoir. Engineering Geology, 28, 105981(2021) [42] SONG, C. P., LU, Y. Y., XIA, B. W., and HU, K. Effects of natural fractures on hydraulic fractures propagation of coal seams. Journal of Northeastern University (Natural Science), 35(5), 756-760(2014) [43] SUN, T. W., ZENG, Q. D., and XING, H. L. A quantitative model to predict hydraulic fracture propagating across cemented natural fracture. Journal of Petroleum Science and Engineering, 208, 109595(2022) [44] ZHENG, H., PU, C. S., and SUN, C. Study on the interaction between hydraulic fracture and natural fracture based on extended finite element method. Engineering Fracture Mechanics, 230, 106981(2020) [45] GU, H. R., WENG, X., LUND, J., MACK, M., GANGULY, U., and SUAREZRIVERA, R. Hydraulic fracture crossing natural fracture at non-orthogonal angles:a criterion and its validation. SPE Production and Operation, 27(1), 20-26(2012) [46] ZENG, Q. D. and YAO, J. Numerical simulation of fracture network generation in naturally fractured reservoirs. Journal of Natural Gas Science and Engineering, 30, 430-443(2016) [47] WILLINGHAM, J. D., TAN, H. C., and NORMA, L. R. Perforation friction pressure of fracturing fluid slurries. Low Permeability Reservoirs Symposium, SPE-25891-MS, Denver (1993) [48] SHEN, W. H. and ZHAO, Y. P. Quasi-static crack growth under symmetrical loads in hydraulic fracturing. Journal of Applied Mechanics, 84, 081009(2017) [49] SHEN, W. H. and ZHAO, Y. P. Combined effect of pressure and shear stress on penny-shaped fluid-driven cracks. Journal of Applied Mechanics, 85, 031003(2018) [50] SHEN, W. H., YANG, F. Q., and ZHAO, Y. P. Unstable crack growth in hydraulic fracturing:the combined effects of pressure and shear stress for a power-law fluid. Engineering Fracture Mechanics, 225, 106245(2020) [51] PEIRCE, A. Hermite cubic collocation scheme for plain strain hydraulic fractures. Computer Methods in Applied Mechanics and Engineering, 199, 1949-1962(2010) [52] ADACHI, J., SIEBRITS, E., PEIRCE, A., and DESROCHES, J. Computer simulation of hydraulic fractures. International Journal of Rock Mechanics & Mining Sciences, 44, 739-757(2007) [53] WANG, W., YAO, J., SUN, H., and SONG, W. H. Influence of gas transport mechanisms on the productivity of multi-stage fractured horizontal wells in shale gas reservoirs. Petroleum Science, 12, 664-673(2015) [54] YAO, J., SUN, H., FAN, D. Y., WANG, C. C., and SUN, Z. X. Numerical simulation of gas transport mechanisms in tight shale gas reservoir. Petroleum Science, 10, 528-537(2013) [55] FLORENCE, F., RUSHING, J., NEWSHAM, K., and BLASINGAME, T. Improved permeability prediction relations for low permeability sands. Rocky Mountain Oil and Gas Technology Symposium, SPE, Denver (2007) [56] GEERTSMA, J. and DE KLERK, F. A rapid method of predicting width and extent of hydraulically induced fractures. Journal of Petroleum Technology, 21, 1571-1581(1969) [57] ZENG, Y. J., ZHANG, X., and ZHANG, B. P. Stress redistribution in multi-stage hydraulic fracturing of horizontal wells in shales. Petroleum Science, 12(4), 628-635(2015) [58] SUN, F. Q., SHEN, W. H., and ZHAO, Y. P. Deflected trajectory of a single fluid-driven crack under anisotropic in-situ stress. Extreme Mechanics Letters, 29, 100483(2019) [59] RUDOLF, J., WILIAM, J., and DONNA, L. Statistical Methods, Academic Press, New York (2010) [60] SUN, F. Q., DU, S. H., and ZHAO, Y. P. Fluctuation of fracturing curves indicates in-situ brittleness and reservoir fracturing characteristics in unconventional energy exploitation. Energy, 252, 124043(2022) [61] DU, S. H., SHEN, W. H., and ZHAO, Y. P. Quantitative evaluation of stress sensitivity in shale reservoirs:ideas and applications. Chinese Journal of Theoretical and Applied Mechanics, 54, 2235-2247(2022) |