[1] DIANI, J., BRIEU, M., VACHERAND, J. M., and REZGUI, A. Directional model for isotropic and anisotropic hyperelastic rubber-like materials. Mechanics of Materials, 36(4), 313-321 (2004) [2] OLIVEIRA, B. F. and CREUS, G. J. An analytical-numerical framework for the study of ageing in fibre reinforced polymer composites. Composite Structures, 65(3-4), 443-457 (2004) [3] MERODIO, J. and OGDEN, R. W. Material instabilities in fiber-reinforced non-linearly elastic solids under plane deformation. Archives of Mechanics, 54, 525-552 (2002) [4] MERODIO, J. and OGDEN, R. W. Instabilities and loss of ellipticity in fiber-reinforced compressible non-linearly elastic solids under plane deformation. International Journal of Solids and Structures, 40, 4707-4727 (2003) [5] MERODIO, J. and OGDEN, R. W. Mechanical response of fiber-reinforced incompressible non-linear elastic solids. International Journal of Nonlinear Mechanics, 40(3), 213-227 (2005) [6] MERODIO, J. and OGDEN, R. W. On tensile instabilities and ellipticity loss in fiber-reinforced incompressible non-linearly elastic solids. Mechanics Research Communications, 32, 290-299 (2005) [7] ISHIKAWA, S., TOKUDA, A., and KOTERA, H. Numerical simulation for fibre-reinforced rubber. Journal of Computer Science and Technology, 2(4), 587-596 (2008) [8] ANDRIYANA, A., BILLON, N., and SILVA, L. Mechanical response of a short fiber-reinforced thermoplastic: experimental investigation and continuum mechanical modeling. European Journal of Mechanics-A/Solids, 29(6), 1065-1077 (2010) [9] CIARLETTA, P., IZZO, I., MICERA, S., and TENDICK, F. Stiffening by fiber reinforcement in soft materials: a hyperelastic theory at large strains and its application. Journal of the Mechanical Behavior of Biomedical Materials, 4(7), 1359-1368 (2011) [10] LIANG, J. Z. Predictions of tensile strength of short inorganic fibre reinforced polymer composites. Polymer Testing, 30(7), 749-752 (2011) [11] FEREIDOONNAZHAD, B., NAGHDABADI, R., and ARGHAVANI, J. A hyperelastic constitutive model for fiber-reinforced rubber-like materials. International Journal of Engineering Science, 71(1), 36-44 (2013) [12] MAHNKEN, R. and DAMMANN, C. A three-scale framework for fibre-reinforced-polymer curing, part I: microscopic modeling and mesoscopic effective properties. International Journal of Solids and Structures, 100-101, 341-355 (2016) [13] MAHNKEN, R. and DAMMAN, C. A three-scale framework for fibre-reinforced-polymer curing, part II: mesoscopic modeling and macroscopic effective properties. International Journal of Solids and Structures, 100-101, 356-375 (2016) [14] NAZARENKO, L., STOLARSKI, H., and ALTENBACH, H. On modeling and analysis of effective properties of carbon nanotubes reinforced materials. Composite Structures, 189(7), 718-727 (2018) [15] HOLZAPFEL, G. and OGDEN, R. W. Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philosophical Transactions of the Royal Society of London A, 367, 3445-3475 (2009) [16] RIVLIN, R. S. Large elastic deformations of isotropic materials, I: fundamental concepts. Philosophical Transactions of the Royal Society of London A, 240(822), 459-490 (1948) [17] OGDEN, R. W. Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubberlike solids. Proceedings of the Royal Society of London A, 326(1567), 565-584 (1972) [18] BEATTY, M. F. Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues with examples. Applied Mechanics Reviews, 40(12), 1699-1734 (1987) [19] GENT, A. N. A new constitutive relation for rubber. Rubber Chemistry and Technology, 69(1), 59-61 (1996) [20] TRELOAR, L. R. G. The Physics of Rubber Elasticity, 3rd ed., Oxford University Press, Oxford (2005) [21] ARRUDA, E. M. and BOYCE, M. C. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids, 41(2), 389-412 (1993) [22] BOYCE, M. C. and ARRUDA, E. M. Constitutive models of rubber elasticity: a review. Rubber Chemistry and Technology, 73(3), 504-523 (2000) [23] OGDEN, R. W., SACCOMANDI, G., and SGURA, I. On worm-like chain models within the three-dimensional continuum mechanics framework. Philosophical Transactions of the Royal Society of London A, 462(2067), 749-768 (2006) [24] GENDY, A. S. and SALEEB, A. F. Nonlinear material parameter estimation for characterizing hyperelastic large strain models. Computational Mechanics, 25(1), 66-77 (2000) [25] OGDEN, R. W., SACCOMANDI, G., and SGURA, I. Fitting hyperelastic models to experimental data. Computational Mechanics, 34(4), 484-502 (2004) [26] GAO, H., LI, W. G., CAI, L., BERRY, C., and LUO, X. Y. Parameter estimation in a Holzapfel-Ogden law for healthy myocardium. Journal of Engineering Mathematics, 95(3), 231-248 (2015) [27] SHARRIFF, M. H. B. M. Nonlinear transversely isotropic solids: an alternative representation. Quarterly Journal of Mechanics and Applied Mathematics, 61(2), 129-149 (2008) [28] SHARRIFF, M. H. B. M. On the spectral constitutive modelling of transversely isotropic soft tissue: physical invariants. International Journal of Engineering Science, 120, 199-219 (2017) [29] SHARRIFF, M. H. B. M., MERODIO, J., and BUSTAMANTE, R. A nonlinear electro-elastic model with residual stresses and a preferred direction. Mathematics and Mechanics of Solids, 25(3), 838-865 (2020). [30] SHARRIFF, M. H. B. M., BUSTAMANTE, R., and MERODIO, J. Nonlinear elastic constitutive relations of residually stressed composites with stiff curved fibres. Applied Mathematics and Mechanics (English Edition), 43(10), 1515-1530 (2022) https://doi.org/10.1007/s10483-022-2910-7 [31] XIAO, H. An explicit, direct approach to obtaining multiaxial elastic potentials that exactly match data of four benchmark tests for rubbery materials, part 1: incompressible deformations. Acta Mechanica, 223(9), 2039-2063 (2012) [32] WANG, S. Y., ZHAN, L., XI, H. F., BRUHNS, O. T., and XIAO, H. Hencky strain and logarithmic rate for unified approach to constitutive modeling of continua. State of the Art and Future Trends in Material Modeling, Springer, Cham, 443-484 (2019) [33] TRUSDELL, C. A. and NOLL, W. Nonlinear Field Theories of Mechanics, Springer, Berlin (1965) [34] XIAO, H. Hencky strain and Hencky model: extending history and ongoing tradition. Multidiscipline Modeling in Materials and Structures, 1(1), 1-51 (2005) [35] XIAO, H. Deformable micro-continua in which quantum mysteries reside. Applied Mathematics and Mechanics (English Edition), 40(12), 1805-1830 (2019) https://doi.org/10.1007/s10483-019-2546-6 [36] WANG, S. Y., ZHAN, L., XI, H. F., and XIAO, H. New finite strain elastoplastic equations for accurately and explicitly simulating pseudoelastic-to-plastic transition effects of shape memory alloys. Applied Mathematics and Mechanics (English Edition), 41(10), 1583-1596 (2020) https://doi.org/10.1007/s10483-020-2659-7 [37] XIAO, H. Unified explicit basis-free expressions for time rate and conjugate stress of an arbitrary Hill's strain. International Journal of Solids and Structures, 32(22), 3327-3340 (1995) [38] BRUHNS, O. T., MEYERS, A., and XIAO, H. Constitutive inequalities for an isotropic elastic strain-energy function based on Hencky's logarithmic strain tensor. Proceedings of the Royal Society of London A, 457, 2207-2226 (2001) [39] HAUGHTON, D. M. and MERODIO, J. The elasticity of arterial tissue affected by Marfan's syndrome. Mechanics Research Communications, 36(6), 659-668 (2009) [40] ZHAO, G. C., XI, H. F., and YANG, J. B. Transversely isotropic constitutive model of the polypropylene separator based on Rich-Hill elastoplastic constitutive theory. Journal of Electrochemical Energy Conversion and Storage, 18(2), 1-26 (2020) [41] ZHANG, Y. Y., LI, H., and XIAO, H. Further study of rubber-like elasticity: elastic potentials matching biaxial data. Applied Mathematics and Mechanics (English Edition), 35(1), 13-24 (2014) https://doi.org/10.1007/s10483-014-1768-x [42] YU, L. D., JIN, T. F., YIN, Z. N., and XIAO, H. Multi-axial strain-stiffening elastic potentials with energy bounds: explicit approach based on uniaxial data. Applied Mathematics and Mechanics (English Edition), 36(7), 883-894 (2015) https://doi.org/10.1007/s10483-015-1955-9 [43] WANG, S. Y., ZHAN, L., XI, H. F., BRUHNS, O. T., and XIAO, H. Unified simulation of hardening and softening effects for metals up to failure. Applied Mathematics and Mechanics (English Edition), 42(12), 1685-1702 (2021) https://doi.org/10.1007/s10483-021-2793-6 [44] XU, Z. H., ZHAN, L., WANG, S. Y., XI, H. F., and XIAO, H. An accurate and explicit approach to modeling realistic hardening-to-softening transition effects of metals. ZAMM-Journal of Applied Mathematics and Mechanics, 101(2), e202000122 (2020) |