1 |
WANG, Z. L., WU, W., and FALCONI, C. Piezotronics and piezo-phototronics with thirdgeneration semiconductors. MRS Bulletin, 43 (12), 922- 927 (2018)
|
2 |
ZHANG, Y., LENG, Y., WILLATZEN, M., and HUANG, B. Theory of piezotronics and piezophototronics. MRS Bulletin, 43 (12), 928- 935 (2018)
|
3 |
HE, J. H., HSIN, C. L., LIU, J., CHEN, L. J., and WANG, Z. L. Piezoelectric gated diode of a single ZnO nanowire. Advanced Materials, 19 (6), 781- 784 (2007)
|
4 |
YANG, Q., WANG, W., XU, S., and WANG, Z. L. Enhancing light emission of ZnO microwirebased diodes by piezo-phototronic effect. Nano Letters, 11 (9), 4012- 4017 (2011)
|
5 |
YANG, Q., GUO, X., WANG, W., ZHANG, Y., XU, S., LIEN, D. H., and WANG, Z. L. Enhancing sensitivity of a single ZnO micro-/nanowire photodetector by piezo-phototronic effect. ACS Nano, 4 (10), 6285- 6291 (2010)
|
6 |
WANG, C., BAO, R., ZHAO, K., ZHANG, T., DONG, L., and PAN, C. Enhanced emission intensity of vertical aligned flexible ZnO nanowire/p-polymer hybridized LED array by piezophototronic effect. Nano Energy, 14, 364- 371 (2015)
|
7 |
WANG, X., PENG, W., YU, R., ZOU, H., DAI, Y., ZI, Y., WU, C., LI, S., and WANG, Z. L. Simultaneously enhancing light emission and suppressing efficiency droop in GaN microwire-based ultraviolet light-emitting diode by the piezo-phototronic effect. Nano Letters, 17 (6), 3718- 3724 (2017)
|
8 |
ZHU, L., WANG, L., XUE, F., CHEN, L., FU, J., FENG, X., LI, T., and WANG, Z. L. Piezophototronic effect enhanced flexible solar cells based on n-ZnO/p-SnS core-shell nanowire array. Advanced Science, 4 (1), 1600185 (2017)
|
9 |
PAN, C., NIU, S., DING, Y., DONG, L., YU, R., LIU, Y., ZHU, G., and WANG, Z. L. Enhanced Cu2S/CdS coaxial nanowire solar cells by piezo-phototronic effect. Nano Letters, 12 (6), 3302- 3307 (2012)
|
10 |
ZHU, L., ZHANG, Y., LIN, P., WANG, Y., YANG, L., CHEN, L., WANG, L., CHEN, B., and WANG, Z. L. Piezotronic effect on Rashba spin-orbit coupling in a ZnO/P3HT nanowire array structure. ACS Nano, 12 (2), 1811- 1820 (2018)
|
11 |
WANG, L., LIU, S., GAO, G., PANG, Y., YIN, X., FENG, X., ZHU, L., BAI, Y., CHEN, L., XIAO, T., WANG, X., QIN, Y., and WANG, Z. L. Ultrathin piezotronic transistors with 2 nm channel lengths. ACS Nano, 12 (5), 4903- 4908 (2018)
|
12 |
WANG, L., LIU, S., ZHANG, Z., FENG, X., ZHU, L., GUO, H., DING, W., CHEN, L., QIN, Y., and WANG, Z. L. 2D piezotronics in atomically thin zinc oxide sheets: interfacing gating and channel width gating. Nano Energy, 60, 724- 733 (2019)
|
13 |
QU, Y. L., PAN, E., ZHU, F., and ROY, A. K. Modeling thermoelectric effects in piezoelectric semiconductors: new fully coupled mechanisms for mechanically manipulated heat flux and refrigeration. International Journal of Engineering Science, 180, 103775 (2023)
|
14 |
WANG, Z. L. Nanopiezotronics. Advanced Materials, 19 (6), 889- 892 (2007)
|
15 |
WANG, Z. L. Piezopotential gated nanowire devices: piezotronics and piezo-phototronics. Nano Today, 5 (6), 540- 552 (2010)
|
16 |
LIU, Y., ZHANG, Y., YANG, Q., NIU, S., and WANG, Z. L. Fundamental theories of piezotronics and piezo-phototronics. Nano Energy, 14, 257- 275 (2015)
|
17 |
WANG, X., ZHOU, J., SONG, J., LIU, J., XU, N., and WANG, Z. L. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Letters, 6 (12), 2768- 2772 (2006)
|
18 |
ZHANG, C. L., WANG, X. Y., CHEN, W. Q., and YANG, J. S. Propagation of extensional waves in a piezoelectric semiconductor rod. AIP Advances, 6 (4), 045301 (2016)
|
19 |
KONG, D., CHENG, R., ZHANG, C., and ZHANG, C. Dynamic manipulation of piezotronic behaviors of composite multiferroic semiconductors through time-dependent magnetic field. Journal of Applied Physics, 128 (6), 064503 (2020)
|
20 |
SLADEK, J., SLADEK, V., PAN, E., and WÜNSCHE, M. Fracture analysis in piezoelectric semiconductors under a thermal load. Engineering Fracture Mechanics, 126, 27- 39 (2014)
|
21 |
SLADEK, J., SLADEK, V., PAN, E., and YOUNG, D. Dynamic anti-plane crack analysis in functional graded piezoelectric semiconductor crystals. Computer Modeling in Engineering & Sciences, 99, 273- 296 (2014)
|
22 |
ZHAO, M., PAN, Y., FAN, C., and XU, G. Extended displacement discontinuity method for analysis of cracks in 2D piezoelectric semiconductors. International Journal of Solids and Structures, 94-95, 50- 59 (2016)
|
23 |
FAN, C., YAN, Y., XU, G., and ZHAO, M. Piezoelectric-conductor iterative method for analysis of cracks in piezoelectric semiconductors via the finite element method. Engineering Fracture Mechanics, 165, 183- 196 (2016)
|
24 |
ARANEO, R., LOVAT, G., BURGHIGNOLI, P., and FALCONI, C. Piezo-semiconductive quasi-1D nanodevices with or without anti-symmetry. Advanced Materials, 24 (34), 4719- 4724 (2012)
|
25 |
ZHANG, C., WANG, X., CHEN, W., and YANG, J. An analysis of the extension of a ZnO piezoelectric semiconductor nanofiber under an axial force. Smart Materials and Structures, 26 (2), 25030 (2017)
|
26 |
GAO, Y., and WANG, Z. L. Electrostatic potential in a bent piezoelectric nanowire: the fundamental theory of nanogenerator and nanopiezotronics. Nano Letters, 7 (8), 2499- 2505 (2007)
|
27 |
LIANG, Y., YANG, W., and YANG, J. Transient bending vibration of a piezoelectric semiconductor nanofiber under a suddenly applied shear force. Computer Modeling in Engineering & Sciences, 32 (6), 688- 697 (2019)
|
28 |
YANG, W., HU, Y., and PAN, E. N. Electronic band energy of a bent ZnO piezoelectric semiconductor nanowire. Applied Mathematics and Mechanics (English Edition), 41 (6), 833- 844 (2020)
doi: 10.1007/s10483-020-2619-7
|
29 |
FAN, S., LIANG, Y., XIE, J., and HU, Y. Exact solutions to the electromechanical quantities inside a statically-bent circular ZnO nanowire by taking into account both the piezoelectric property and the semiconducting performance, part I: linearized analysis. Nano Energy, 40, 82- 87 (2017)
|
30 |
LUO, Y., ZHANG, C., CHEN, W., and YANG, J. An analysis of PN junctions in piezoelectric semiconductors. Journal of Applied Physics, 122 (20), 204502 (2017)
|
31 |
CHENG, R., ZHANG, C., CHEN, W., and YANG, J. Piezotronic effects in the extension of a composite fiber of piezoelectric dielectrics and nonpiezoelectric semiconductors. Journal of Applied Physics, 124 (6), 064506 (2018)
|
32 |
LUO, Y., ZHANG, C., CHEN, W., and YANG, J. Piezopotential in a bended composite fiber made of a semiconductive core and of two piezoelectric layers with opposite polarities. Nano Energy, 54, 341- 348 (2018)
|
33 |
CAO, X., NIU, W., CHENG, Z., and SHI, J. Power series iterative approximation solution to the temperature field in thermoelectric generators made of a functionally graded temperature-dependent material. Journal of Electronic Materials, 49 (9), 5379- 5390 (2020)
|
34 |
QU, Y., JIN, F., and YANG, J. Temperature effects on mobile charges in thermopiezoelectric semiconductor plates. International Journal of Applied Mechanics, 13 (3), 2150037 (2021)
|
35 |
CHENG, R., ZHANG, C., and YANG, J. Thermally induced carrier distribution in a piezoelectric semiconductor fiber. Journal of Electronic Materials, 48 (8), 4939- 4946 (2019)
|
36 |
CHENG, R., ZHANG, C., CHEN, W., and YANG, J. Electrical behaviors of a piezoelectric semiconductor fiber under a local temperature change. Nano Energy, 66, 104081 (2019)
|
37 |
CHENG, R., ZHANG, C., CHEN, W., and YANG, J. Temperature effects on PN junctions in piezoelectric semiconductor fibers with thermoelastic and pyroelectric couplings. Journal of Electronic Materials, 49 (5), 3140- 3148 (2020)
|
38 |
GUO, M., LU, C., QIN, G., and ZHAO, M. Temperature gradient-dominated electrical behaviours in a piezoelectric PN junction. Journal of Electronic Materials, 50 (3), 947- 953 (2021)
|