| 1 | 
																						 
											  WANG, Z. L.,   WU, W., and   FALCONI, C.   Piezotronics and piezo-phototronics with thirdgeneration semiconductors. MRS Bulletin, 43 (12), 922- 927 (2018)
																						 | 
										
																													
																							| 2 | 
																						 
											  ZHANG, Y.,   LENG, Y.,   WILLATZEN, M., and   HUANG, B.   Theory of piezotronics and piezophototronics. MRS Bulletin, 43 (12), 928- 935 (2018)
																						 | 
										
																													
																							| 3 | 
																						 
											  HE, J. H.,   HSIN, C. L.,   LIU, J.,   CHEN, L. J., and   WANG, Z. L.   Piezoelectric gated diode of a single ZnO nanowire. Advanced Materials, 19 (6), 781- 784 (2007)
																						 | 
										
																													
																							| 4 | 
																						 
											  YANG, Q.,   WANG, W.,   XU, S., and   WANG, Z. L.   Enhancing light emission of ZnO microwirebased diodes by piezo-phototronic effect. Nano Letters, 11 (9), 4012- 4017 (2011)
																						 | 
										
																													
																							| 5 | 
																						 
											  YANG, Q.,   GUO, X.,   WANG, W.,   ZHANG, Y.,   XU, S.,   LIEN, D. H., and   WANG, Z. L.   Enhancing sensitivity of a single ZnO micro-/nanowire photodetector by piezo-phototronic effect. ACS Nano, 4 (10), 6285- 6291 (2010)
																						 | 
										
																													
																							| 6 | 
																						 
											  WANG, C.,   BAO, R.,   ZHAO, K.,   ZHANG, T.,   DONG, L., and   PAN, C.   Enhanced emission intensity of vertical aligned flexible ZnO nanowire/p-polymer hybridized LED array by piezophototronic effect. Nano Energy, 14, 364- 371 (2015)
																						 | 
										
																													
																							| 7 | 
																						 
											  WANG, X.,   PENG, W.,   YU, R.,   ZOU, H.,   DAI, Y.,   ZI, Y.,   WU, C.,   LI, S., and   WANG, Z. L.   Simultaneously enhancing light emission and suppressing efficiency droop in GaN microwire-based ultraviolet light-emitting diode by the piezo-phototronic effect. Nano Letters, 17 (6), 3718- 3724 (2017)
																						 | 
										
																													
																							| 8 | 
																						 
											  ZHU, L.,   WANG, L.,   XUE, F.,   CHEN, L.,   FU, J.,   FENG, X.,   LI, T., and   WANG, Z. L.   Piezophototronic effect enhanced flexible solar cells based on n-ZnO/p-SnS core-shell nanowire array. Advanced Science, 4 (1), 1600185 (2017)
																						 | 
										
																													
																							| 9 | 
																						 
											  PAN, C.,   NIU, S.,   DING, Y.,   DONG, L.,   YU, R.,   LIU, Y.,   ZHU, G., and   WANG, Z. L.   Enhanced Cu2S/CdS coaxial nanowire solar cells by piezo-phototronic effect. Nano Letters, 12 (6), 3302- 3307 (2012)
																						 | 
										
																													
																							| 10 | 
																						 
											  ZHU, L.,   ZHANG, Y.,   LIN, P.,   WANG, Y.,   YANG, L.,   CHEN, L.,   WANG, L.,   CHEN, B., and   WANG, Z. L.   Piezotronic effect on Rashba spin-orbit coupling in a ZnO/P3HT nanowire array structure. ACS Nano, 12 (2), 1811- 1820 (2018)
																						 | 
										
																													
																							| 11 | 
																						 
											  WANG, L.,   LIU, S.,   GAO, G.,   PANG, Y.,   YIN, X.,   FENG, X.,   ZHU, L.,   BAI, Y.,   CHEN, L.,   XIAO, T.,   WANG, X.,   QIN, Y., and   WANG, Z. L.   Ultrathin piezotronic transistors with 2 nm channel lengths. ACS Nano, 12 (5), 4903- 4908 (2018)
																						 | 
										
																													
																							| 12 | 
																						 
											  WANG, L.,   LIU, S.,   ZHANG, Z.,   FENG, X.,   ZHU, L.,   GUO, H.,   DING, W.,   CHEN, L.,   QIN, Y., and   WANG, Z. L.   2D piezotronics in atomically thin zinc oxide sheets: interfacing gating and channel width gating. Nano Energy, 60, 724- 733 (2019)
																						 | 
										
																													
																							| 13 | 
																						 
											  QU, Y. L.,   PAN, E.,   ZHU, F., and   ROY, A. K.   Modeling thermoelectric effects in piezoelectric semiconductors: new fully coupled mechanisms for mechanically manipulated heat flux and refrigeration. International Journal of Engineering Science, 180, 103775 (2023)
																						 | 
										
																													
																							| 14 | 
																						 
											  WANG, Z. L.   Nanopiezotronics. Advanced Materials, 19 (6), 889- 892 (2007)
																						 | 
										
																													
																							| 15 | 
																						 
											  WANG, Z. L.   Piezopotential gated nanowire devices: piezotronics and piezo-phototronics. Nano Today, 5 (6), 540- 552 (2010)
																						 | 
										
																													
																							| 16 | 
																						 
											  LIU, Y.,   ZHANG, Y.,   YANG, Q.,   NIU, S., and   WANG, Z. L.   Fundamental theories of piezotronics and piezo-phototronics. Nano Energy, 14, 257- 275 (2015)
																						 | 
										
																													
																							| 17 | 
																						 
											  WANG, X.,   ZHOU, J.,   SONG, J.,   LIU, J.,   XU, N., and   WANG, Z. L.   Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Letters, 6 (12), 2768- 2772 (2006)
																						 | 
										
																													
																							| 18 | 
																						 
											  ZHANG, C. L.,   WANG, X. Y.,   CHEN, W. Q., and   YANG, J. S.   Propagation of extensional waves in a piezoelectric semiconductor rod. AIP Advances, 6 (4), 045301 (2016)
																						 | 
										
																													
																							| 19 | 
																						 
											  KONG, D.,   CHENG, R.,   ZHANG, C., and   ZHANG, C.   Dynamic manipulation of piezotronic behaviors of composite multiferroic semiconductors through time-dependent magnetic field. Journal of Applied Physics, 128 (6), 064503 (2020)
																						 | 
										
																													
																							| 20 | 
																						 
											  SLADEK, J.,   SLADEK, V.,   PAN, E., and   WÜNSCHE, M.   Fracture analysis in piezoelectric semiconductors under a thermal load. Engineering Fracture Mechanics, 126, 27- 39 (2014)
																						 | 
										
																													
																							| 21 | 
																						 
											  SLADEK, J.,   SLADEK, V.,   PAN, E., and   YOUNG, D.   Dynamic anti-plane crack analysis in functional graded piezoelectric semiconductor crystals. Computer Modeling in Engineering & Sciences, 99, 273- 296 (2014)
																						 | 
										
																													
																							| 22 | 
																						 
											  ZHAO, M.,   PAN, Y.,   FAN, C., and   XU, G.   Extended displacement discontinuity method for analysis of cracks in 2D piezoelectric semiconductors. International Journal of Solids and Structures, 94-95, 50- 59 (2016)
																						 | 
										
																													
																							| 23 | 
																						 
											  FAN, C.,   YAN, Y.,   XU, G., and   ZHAO, M.   Piezoelectric-conductor iterative method for analysis of cracks in piezoelectric semiconductors via the finite element method. Engineering Fracture Mechanics, 165, 183- 196 (2016)
																						 | 
										
																													
																							| 24 | 
																						 
											  ARANEO, R.,   LOVAT, G.,   BURGHIGNOLI, P., and   FALCONI, C.   Piezo-semiconductive quasi-1D nanodevices with or without anti-symmetry. Advanced Materials, 24 (34), 4719- 4724 (2012)
																						 | 
										
																													
																							| 25 | 
																						 
											  ZHANG, C.,   WANG, X.,   CHEN, W., and   YANG, J.   An analysis of the extension of a ZnO piezoelectric semiconductor nanofiber under an axial force. Smart Materials and Structures, 26 (2), 25030 (2017)
																						 | 
										
																													
																							| 26 | 
																						 
											  GAO, Y., and   WANG, Z. L.   Electrostatic potential in a bent piezoelectric nanowire: the fundamental theory of nanogenerator and nanopiezotronics. Nano Letters, 7 (8), 2499- 2505 (2007)
																						 | 
										
																													
																							| 27 | 
																						 
											  LIANG, Y.,   YANG, W., and   YANG, J.   Transient bending vibration of a piezoelectric semiconductor nanofiber under a suddenly applied shear force. Computer Modeling in Engineering & Sciences, 32 (6), 688- 697 (2019)
																						 | 
										
																													
																							| 28 | 
																						 
											  YANG, W.,   HU, Y., and   PAN, E. N.   Electronic band energy of a bent ZnO piezoelectric semiconductor nanowire. Applied Mathematics and Mechanics (English Edition), 41 (6), 833- 844  (2020)
																							 
																									doi: 10.1007/s10483-020-2619-7
																																														 | 
										
																													
																							| 29 | 
																						 
											  FAN, S.,   LIANG, Y.,   XIE, J., and   HU, Y.   Exact solutions to the electromechanical quantities inside a statically-bent circular ZnO nanowire by taking into account both the piezoelectric property and the semiconducting performance, part I: linearized analysis. Nano Energy, 40, 82- 87 (2017)
																						 | 
										
																													
																							| 30 | 
																						 
											  LUO, Y.,   ZHANG, C.,   CHEN, W., and   YANG, J.   An analysis of PN junctions in piezoelectric semiconductors. Journal of Applied Physics, 122 (20), 204502 (2017)
																						 | 
										
																													
																							| 31 | 
																						 
											  CHENG, R.,   ZHANG, C.,   CHEN, W., and   YANG, J.   Piezotronic effects in the extension of a composite fiber of piezoelectric dielectrics and nonpiezoelectric semiconductors. Journal of Applied Physics, 124 (6), 064506 (2018)
																						 | 
										
																													
																							| 32 | 
																						 
											  LUO, Y.,   ZHANG, C.,   CHEN, W., and   YANG, J.   Piezopotential in a bended composite fiber made of a semiconductive core and of two piezoelectric layers with opposite polarities. Nano Energy, 54, 341- 348 (2018)
																						 | 
										
																													
																							| 33 | 
																						 
											  CAO, X.,   NIU, W.,   CHENG, Z., and   SHI, J.   Power series iterative approximation solution to the temperature field in thermoelectric generators made of a functionally graded temperature-dependent material. Journal of Electronic Materials, 49 (9), 5379- 5390 (2020)
																						 | 
										
																													
																							| 34 | 
																						 
											  QU, Y.,   JIN, F., and   YANG, J.   Temperature effects on mobile charges in thermopiezoelectric semiconductor plates. International Journal of Applied Mechanics, 13 (3), 2150037 (2021)
																						 | 
										
																													
																							| 35 | 
																						 
											  CHENG, R.,   ZHANG, C., and   YANG, J.   Thermally induced carrier distribution in a piezoelectric semiconductor fiber. Journal of Electronic Materials, 48 (8), 4939- 4946 (2019)
																						 | 
										
																													
																							| 36 | 
																						 
											  CHENG, R.,   ZHANG, C.,   CHEN, W., and   YANG, J.   Electrical behaviors of a piezoelectric semiconductor fiber under a local temperature change. Nano Energy, 66, 104081 (2019)
																						 | 
										
																													
																							| 37 | 
																						 
											  CHENG, R.,   ZHANG, C.,   CHEN, W., and   YANG, J.   Temperature effects on PN junctions in piezoelectric semiconductor fibers with thermoelastic and pyroelectric couplings. Journal of Electronic Materials, 49 (5), 3140- 3148 (2020)
																						 | 
										
																													
																							| 38 | 
																						 
											  GUO, M.,   LU, C.,   QIN, G., and   ZHAO, M.   Temperature gradient-dominated electrical behaviours in a piezoelectric PN junction. Journal of Electronic Materials, 50 (3), 947- 953 (2021)
																						 |