Applied Mathematics and Mechanics (English Edition) ›› 2024, Vol. 45 ›› Issue (4): 663-676.doi: https://doi.org/10.1007/s10483-024-3102-7
• Articles • Previous Articles Next Articles
Y. ZARE1, M. T. MUNIR2, G. J. WENG3, K. Y. RHEE4,*()
Received:
2023-10-28
Online:
2024-04-01
Published:
2024-04-08
Contact:
K. Y. RHEE
E-mail:rheeky@khu.ac.kr
Supported by:
2010 MSC Number:
Y. ZARE, M. T. MUNIR, G. J. WENG, K. Y. RHEE. Supposition of graphene stacks to estimate the contact resistance and conductivity of nanocomposites. Applied Mathematics and Mechanics (English Edition), 2024, 45(4): 663-676.
1 | ABD, EL-KADER M., AWWAD, N. S., IBRAHIUM, H. A., and AHMED, M. Graphene oxide fillers through polymeric blends of PVC/PVDF using laser ablation technique: electrical behavior, cell viability, and thermal stability. Journal of Materials Research and Technology, 13, 1878- 1886 (2021) |
2 | ALIYA, M., ZARE, E. N., FARIDNOURI, H., GHOMI, M., and MAKVANDI, P. Sulfonated starch-graft-polyaniline@graphene electrically conductive nanocomposite: application for tyrosinase immobilization. Biosensors, 12, 939 (2022) |
3 | FAROUQ, R. Functionalized graphene/polystyrene composite, green synthesis and characterization. Scientific Reports, 12, 21757 (2022) |
4 |
WANG, S., MAO, J., ZHANG, W., and LU, H. Nonlocal thermal buckling and postbuckling of functionally graded graphene nanoplatelet reinforced piezoelectric micro-plate. Applied Mathematics and Mechanics (English Edition), 43 (3), 341- 354 (2022)
doi: 10.1007/s10483-022-2821-8 |
5 |
HU, B., LIU, J., WANG, Y., ZHANG, B., WANG, J., and SHEN, H. Study on wave dispersion characteristics of piezoelectric sandwich nanoplates considering surface effects. Applied Mathematics and Mechanics (English Edition), 43 (9), 1339- 1354 (2022)
doi: 10.1007/s10483-022-2897-9 |
6 |
ZARE, Y., and RHEE, K. The roles of polymer-graphene interface and contact resistance among nanosheets in the effective conductivity of nanocomposites. Applied Mathematics and Mechanics (English Edition), 44 (11), 1941- 1956 (2023)
doi: 10.1007/s10483-023-3046-9 |
7 | ZARE, Y., GHARIB, N., and RHEE, K. Y. Influences of graphene morphology and contact distance between nanosheets on the effective conductivity of polymer nanocomposites. Journal of Materials Research and Technology, 25, 3588- 3597 (2023) |
8 | ZHOU, Y., BAO, Q., TANG, L. A. L., ZHONG, Y., and LOH, K. P. Hydrothermal dehydration for the "green" reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chemistry of Materials, 21, 2950- 2956 (2009) |
9 | COMPTON, O. C., and NGUYEN, S. T. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small, 6, 711- 723 (2010) |
10 | CHIPARA, D., TREVINO, A., MARTIROSYAN, K. S., and CHIPARA, M. Interphase in polymer-based nanocomposites: polyoctenamer-single-walled carbon nanotubes. Surfaces and Interfaces, 40, 103011 (2023) |
11 | CHIPARA, M., BAIBARAC, M., COMPAGNINI, G., and GAO, J. From interface to interphase. Surfaces and Interfaces, 42, 103435 (2023) |
12 | CREMONEZZI, J. M. D., PINTO, G. M., MINCHEVA, R., ANDRADE, R. J. E., RAQUEZ, J. M., and FECHINE, G. J. M. The micromechanics of graphene oxide and molybdenum disulfide in thermoplastic nanocomposites and the impact to the polymer-filler interphase. Composites Science and Technology, 243, 110236 (2023) |
13 | FALLAHI, H., KAYNAN, O., and ASADI, A. Insights into the effect of fiber-matrix interphase physiochemical-mechanical properties on delamination resistance and fracture toughness of hybrid composites. Composites Part A: Applied Science and Manufacturing, 166, 107390 (2023) |
14 | KAMAE, T., and DRZAL, L. T. Carbon fiber/epoxy composite property enhancement through incorporation of carbon nanotubes at the fiber-matrix interphase, part Ⅱ: mechanical and electrical properties of carbon nanotube coated carbon fiber composites. Composites Part A: Applied Science and Manufacturing, 160, 107023 (2022) |
15 | BAEK, K., SHIN, H., and CHO, M. Multiscale modeling of mechanical behaviors of nano-SiC/epoxy nanocomposites with modified interphase model: effect of nanoparticle clustering. Composites Science and Technology, 203, 108572 (2021) |
16 | QIAO, R., and BRINSON, L. C. Simulation of interphase percolation and gradients in polymer nanocomposites. Composites Science and Technology, 69, 491- 499 (2009) |
17 | BAXTER, S. C., and ROBINSON, C. T. Pseudo-percolation: critical volume fractions and mechanical percolation in polymer nanocomposites. Composites Science and Technology, 71, 1273- 1279 (2011) |
18 | ZARE, Y., and RHEE, K. Y. A simple methodology to predict the tunneling conductivity of polymer/CNT nanocomposites by the roles of tunneling distance, interphase and CNT waviness. RSC Advances, 7, 34912- 34921 (2017) |
19 | DU, F., SCOGNA, R. C., ZHOU, W., BRAND, S., FISCHER, J. E., and WINEY, K. I. Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules, 37, 9048- 9055 (2004) |
20 | RYVKINA, N., TCHMUTIN, I., VILČÁKOVÁ, J., PELÍŠKOVÁ, M., and SÁHA, P. The deformation behavior of conductivity in composites where charge carrier transport is by tunneling: theoretical modeling and experimental results. Synthetic Metals, 148, 141- 146 (2005) |
21 | AMBROSETTI, G., GRIMALDI, C., BALBERG, I., MAEDER, T., DANANI, A., and RYSER, P. Solution of the tunneling-percolation problem in the nanocomposite regime. Physical Review B, 81, 155434 (2010) |
22 | HU, N., KARUBE, Y., YAN, C., MASUDA, Z., and FUKUNAGA, H. Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Materialia, 56, 2929- 2936 (2008) |
23 | KAZEMI, F., MOHAMMADPOUR, Z., NAGHIB, S. M., ZARE, Y., and RHEE, K. Y. Percolation onset and electrical conductivity for a multiphase system containing carbon nanotubes and nanoclay. Journal of Materials Research and Technology, 15, 1777- 1788 (2021) |
24 | RAZAVI, R., ZARE, Y., and RHEE, K. Y. A two-step model for the tunneling conductivity of polymer carbon nanotube nanocomposites assuming the conduction of interphase regions. RSC Advances, 7, 50225- 50233 (2017) |
25 | ARJMANDI, S. K., YEGANEH, J. K., ZARE, Y., and RHEE, K. Y. Development of Kovacs model for electrical conductivity of carbon nanofiber-polymer systems. Scientific Reports, 13, 7 (2023) |
26 | MOHAMMADPOUR-HARATBAR, A., ZARE, Y., and RHEE, K. Y. Simulation of electrical conductivity for polymer silver nanowires systems. Scientific Reports, 13, 5 (2023) |
27 | CLINGERMAN, M. L., KING, J. A., SCHULZ, K. H., and MEYERS, J. D. Evaluation of electrical conductivity models for conductive polymer composites. Journal of Applied Polymer Science, 83, 1341- 1356 (2002) |
28 | CHANG, L., FRIEDRICH, K., YE, L., and TORO, P. Evaluation and visualization of the percolating networks in multi-wall carbon nanotube/epoxy composites. Journal of Materials Science, 44, 4003- 4012 (2009) |
29 | KARA, S., ARDA, E., DOLASTIR, F., and PEKCAN, Ö. Electrical and optical percolations of polystyrene latex-multiwalled carbon nanotube composites. Journal of Colloid and Interface Science, 344, 395- 401 (2010) |
30 | ZARE, Y., and RHEE, K. Y. An innovative model for conductivity of graphene-based system by networked nano-sheets, interphase and tunneling zone. Scientific Reports, 12, 15179 (2022) |
31 | ZARE, Y., and RHEE, K. Y. Effect of contact resistance on the electrical conductivity of polymer graphene nanocomposites to optimize the biosensors detecting breast cancer cells. Scientific Reports, 12, 5406 (2022) |
32 | KIM, H., ABDALA, A. A., and MACOSKO, C. W. Graphene/polymer nanocomposites. Macromolecules, 43, 6515- 6530 (2010) |
33 | MITTAL, G., DHAND, V., RHEE, K. Y., PARK, S. J., and LEE, W. R. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. Journal of Industrial and Engineering Chemistry, 21, 11- 25 (2015) |
34 | BRUNE, D. A., and BICERANO, J. Micromechanics of nanocomposites: comparison of tensile and compressive elastic moduli, and prediction of effects of incomplete exfoliation and imperfect alignment on modulus. Polymer, 43, 369- 387 (2002) |
35 | LI, J., and KIM, J. K. Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets. Composites Science and Technology, 67, 2114- 2120 (2007) |
36 | YANOVSKY, Y. G., KOZLOV, G., and KARNET, Y. N. Fractal description of significant nano-effects in polymer composites with nanosized fillers, aggregation, phase interaction, and reinforcement. Physical Mesomechanics, 16, 9- 22 (2013) |
37 | MESSINA, E., LEONE, N., FOTI, A., DI MARCO, G., RICCUCCI, C., DI CARLO, G., DI MAGGIO, F., CASSATA, A., GARGANO, L., and D'ANDREA, C. Double-wall nanotubes and graphene nanoplatelets for hybrid conductive adhesives with enhanced thermal and electrical conductivity. ACS Applied Materials & Interfaces, 8, 23244- 23259 (2016) |
38 | MOHIUDDIN, M., and HOA, S. V. Estimation of contact resistance and its effect on electrical conductivity of CNT/PEEK composites. Composites Science and Technology, 79, 42- 48 (2013) |
39 | KOVACS, J. Z., VELAGALA, B. S., SCHULTE, K., and BAUHOFER, W. Two percolation thresholds in carbon nanotube epoxy composites. Composites Science and Technology, 67, 922- 928 (2007) |
40 | TU, Z., WANG, J., YU, C., XIAO, H., JIANG, T., YANG, Y., SHI, D., MAI, Y. W., and LI, R. K. A facile approach for preparation of polystyrene/graphene nanocomposites with ultra-low percolation threshold through an electrostatic assembly process. Composites Science and Technology, 134, 49- 56 (2016) |
41 | GAO, C., ZHANG, S., WANG, F., WEN, B., HAN, C., DING, Y., and YANG, M. Graphene networks with low percolation threshold in ABS nanocomposites: selective localization and electrical and rheological properties. ACS Applied Materials & Interfaces, 6, 12252- 12260 (2014) |
42 | ZHANG, H. B., ZHENG, W. G., YAN, Q., YANG, Y., WANG, J. W., LU, Z. H., JI, G. Y., and YU, Z. Z. Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer, 51, 1191- 1196 (2010) |
43 | XU, L., CHEN, G., WANG, W., LI, L., and FANG, X. A facile assembly of polyimide/graphene core-shell structured nanocomposites with both high electrical and thermal conductivities. Composites Part A: Applied Science and Manufacturing, 84, 472- 481 (2016) |
44 | AL-SALEH, M. H. Influence of conductive network structure on the EMI shielding and electrical percolation of carbon nanotube/polymer nanocomposites. Synthetic Metals, 205, 78- 84 (2015) |
45 | LI, Y., ZHANG, H., PORWAL, H., HUANG, Z., BILOTTI, E., and PEIJS, T. Mechanical, electrical and thermal properties of in-situ exfoliated graphene/epoxy nanocomposites. Composites Part A: Applied Science and Manufacturing, 95, 229- 236 (2017) |
46 | KIM, H., and MACOSKO, C. W. Morphology and properties of polyester/exfoliated graphite nanocomposites. Macromolecules, 41, 3317- 3327 (2008) |
[1] | E. S. W. WONG;Ying-lin LI;Zuo-jin ZHU. Predicting air pressure in drainage stack of high-rise building [J]. Applied Mathematics and Mechanics (English Edition), 2013, 34(3): 351-362. |
[2] | DUAN Hui-ling;WANG Jian-xiang;HUANG Zhu-ping;HUANG Hong-bo. ANALYTICAL SOLUTIONS FOR ELASTOSTATIC PROBLEMS OF PARTICLE-AND FIBER-REINFORCED COMPOSITES WITH INHOMOGENEOUS INTERPHASES [J]. Applied Mathematics and Mechanics (English Edition), 2005, 26(3): 336-344 . |
[3] | JIANG Chi-ping;LIU You-wen;XU Yao-ling. INTERACTION OF A SCREW DISLOCATION IN THE INTERPHASE LAYER WITH THE INCLUSION AND MATRIX [J]. Applied Mathematics and Mechanics (English Edition), 2003, 24(8): 979-988. |
[4] | He Linghui;Cheng Zhenqiang;Liu Renhuai. INVESTIGATION ON THE EFFECTIVE CONDUCTIVITIES OF CARBON/CARBON FIBER COMPOSITES WITH INHOMOGENEOUS INTERPHASE [J]. Applied Mathematics and Mechanics (English Edition), 1997, 18(3): 211-220. |
[5] | Ye Biquan;Yi Xuming;Jing Shengyong;Liang Ziru. ANALYSIS OF INTERPHASE MECHANICAL BEHAVIOR WITH INTERFACE ELEMENT IN THE COMPOSITE MATERIALS [J]. Applied Mathematics and Mechanics (English Edition), 1996, 17(4): 359-365. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||