1 |
QIN, J., YANG, X., and LI, Z. Hybrid diffuse and sharp interface immersed boundary methods for particulate flows in the presence of complex boundaries. Communications in Computational Physics, 31 (4), 1242- 1271 (2022)
|
2 |
PESKIN, C. S. The immersed boundary method. Acta Numerica, 11, 479- 517 (2002)
|
3 |
MITTAL, R., and IACCARINO, G. Immersed boundary methods. Annual Review of Fluid Mechanics, 37, 239- 261 (2005)
|
4 |
SOTIROPOULOS, F., and YANG, X. Immersed boundary methods for simulating fluid-structure interaction. Progress in Aerospace Sciences, 65, 1- 21 (2014)
|
5 |
HUANG, W. X., and TIAN, F. B. Recent trends and progress in the immersed boundary method. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233 (23-24), 7617- 7636 (2019)
|
6 |
GRIFFITH, B. E., and PATANKAR, N. A. Immersed methods for fluid-structure interaction. Annual Review of Fluid Mechanics, 52, 421- 448 (2020)
|
7 |
PESKIN, C. S. Flow patterns around heart valves: a numerical method. Journal of Computational Physics, 10 (2), 252- 271 (1972)
|
8 |
UHLMANN, M. An immersed boundary method with direct forcing for the simulation of particulate flows. Journal of Computational Physics, 209 (2), 448- 476 (2005)
|
9 |
HUANG, Q., TIAN, F. B., YOUNG, J., and LAI, J. C. S. Transition to chaos in a two-sided collapsible channel flow. Journal of Fluid Mechanics, 926, A15 (2021)
|
10 |
KOLAHDOUZ, E. M., BHALLA, A. P. S., SCOTTEN, L. N., CRAVEN, B. A., and GRIFFITH, B. E. A sharp interface Lagrangian-Eulerian method for rigid-body fluid-structure interaction. Journal of Computational Physics, 443, 110442 (2021)
|
11 |
QIN, J., KOLAHDOUZ, E. M., and GRIFFITH, B. E. An immersed interface-lattice Boltzmann method for fluid-structure interaction. Journal of Computational Physics, 428, 109807 (2021)
|
12 |
GE, L., and SOTIROPOULOS, F. A numerical method for solving the 3D unsteady incompressible Navier-Stokes equations in curvilinear domains with complex immersed boundaries. Journal of Computational Physics, 225 (2), 1782- 1809 (2007)
|
13 |
HERTZ, H. Über die Berührung fester elastischer Körper. Journal für Die Reine und Angewandte Mathematik, 92 (156-171), 22 (1882)
|
14 |
MINDLIN, R. D., and DERESIEWICZ, H. Elastic spheres in contact under varying oblique forces. Journal of Applied Mechanics, 20, 327- 344 (1953)
|
15 |
BORAZJANI, I., GE, L., and SOTIROPOULOS, F. Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. Journal of Computational Physics, 227 (16), 7587- 7620 (2008)
|
16 |
YU, Z., LIN, Z., SHAO, X., and WANG, L. P. A parallel fictitious domain method for the interface-resolved simulation of particle-laden flows and its application to the turbulent channel flow. Engineering Applications of Computational Fluid Mechanics, 10 (1), 160- 170 (2016)
|
17 |
GENEVA, N., PENG, C., LI, X., and WANG, L. P. A scalable interface-resolved simulation of particle-laden flow using the lattice Boltzmann method. Parallel Computing, 67, 20- 37 (2017)
|
18 |
UHLMANN, M. Simulation of particulate flows on multi-processor machines with distributed memory. CIEMAT Technical Report No. 1039, Madrid, Spain (2003)
|
19 |
WANG, S., HE, G., and ZHANG, X. Parallel computing strategy for a flow solver based on immersed boundary method and discrete stream-function formulation. Computers & Fluids, 88, 210- 224 (2013)
|
20 |
YANG, Y., and BALACHANDAR, S. A scalable parallel algorithm for direct-forcing immersed boundary method for multiphase flow simulation on spectral elements. Journal of Supercomputing, 77, 2897- 2927 (2021)
|
21 |
ZHU, Z., HU, R., LEI, Y., SHEN, L., and ZHENG, X. Particle resolved simulation of sediment transport by a hybrid parallel approach. International Journal of Multiphase Flow, 152, 104072 (2022)
|
22 |
YANG, X., SOTIROPOULOS, F., CONZEMIUS, R. J., WACHTLER, J. N., and STRONG, M. B. Large-eddy simulation of turbulent flow past wind turbines/farms: the virtual wind simulator (VWiS). Wind Energy, 18 (12), 2025- 2045 (2015)
|
23 |
LIAO, F., and YANG, X. On the capability of the curvilinear immersed boundary method in predicting near-wall turbulence of turbulent channel flows. Theoretical and Applied Mechanics Letters, 11 (4), 100279 (2021)
|
24 |
QIN, J., ANDREOPOULOS, Y., JIANG, X., DONG, G., and CHEN, Z. Efficient coupling of direct forcing immersed boundary-lattice Boltzmann method and finite element method to simulate fluid-structure interactions. International Journal for Numerical Methods in Fluids, 92 (6), 545- 572 (2020)
|
25 |
YANG, X., ZHANG, X., LI, Z., and HE, G. W. A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations. Journal of Computational Physics, 228 (20), 7821- 7836 (2009)
|
26 |
KLOSS, C., GONIVA, C., HAGER, A., AMBERGER, S., and PIRKER, S. Models, algorithms and validation for open-source DEM and CFD-DEM. Progress in Computational Fluid Dynamics, 12 (2-3), 140- 152 (2012)
|
27 |
KAČIANAUSKAS, R., MAKNICKAS, A., KAČENIAUSKAS, A., MARKAUSKAS, D., and BALEVIČIUS, R. Parallel discrete element simulation of poly-dispersed granular material. Advances in Engineering Software, 41 (1), 52- 63 (2010)
|
28 |
BERGER, R., KLOSS, C., KOHLMEYER, A., and PIRKER, S. Hybrid parallelization of the LIGGGHTS open-source DEM code. Powder Technology, 278, 234- 247 (2015)
|
29 |
COSTA, P., BOERSMA, B. J., WESTERWEEL, J., and BREUGEM, W. P. Collision model for fully resolved simulations of flows laden with finite-size particles. Physical Review E, 92 (5), 053012 (2015)
|
30 |
ZHOU, Z., JIN, G., TIAN, B., and REN, J. Hydrodynamic force and torque models for a particle moving near a wall at finite particle Reynolds numbers. International Journal of Multiphase Flow, 92, 1- 19 (2017)
|
31 |
XIA, Y., XIONG, H., YU, Z., and ZHU, C. Effects of the collision model in interface-resolved simulations of particle-laden turbulent channel flows. Physics of Fluids, 32, 103303 (2020)
|
32 |
JEFFREY, D. Low-Reynolds-number flow between converging spheres. Mathematika, 29, 58- 66 (1982)
|
33 |
BIEGERT, E., VOWINCKEL, B., and MEIBURG, E. A collision model for grain-resolving simulations of flows over dense, mobile, polydisperse granular sediment beds. Journal of Computational Physics, 340, 105- 127 (2017)
|
34 |
GONDRET, P., LANCE, M., and PETIT, L. Bouncing motion of spherical particles in fluids. Physics of Fluids, 14 (2), 643- 652 (2002)
|
35 |
LI, S., YANG, X., JIN, G., and HE, G. Wall-resolved large-eddy simulation of turbulent channel flows with rough walls. Theoretical and Applied Mechanics Letters, 11 (1), 100228 (2021)
|