[1] Hughes,T.J.R.and T.E.Tezduyar,Finite element based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element,Journal of Applied Mechanics,48,Sept.(1981),587. [2] Chien,W.Z.,Variational and Finite Element Methods,Science Press (1980).(in Chinese). [3] Hu,H.C.,Variational Principle of Elastic Mechanics and Its Applications,Science Press (1981).(in Chinese). [4] Allman,D.J.,Finite element analysis of plate buckling using a mixed variational principle,Proc.3rd Conf Matrix Meth.Struct.Mech.(1971),683. [5] Tabarrok,B.and A.Simpson,An equilibrium finite element model for buckling analysis of plates,Int.J.Num.Meth.,Eng.,11 (1977),1733. [6] Reddy,J.N.and C.S.Tsay,Stability and vibration of thin rectangular plates by simplified mixed finite elements,Journal of Sound and Vibration,55,2(1977),289. [7] Venkateswara Rao,G.,J.Venkataramana and K.Kanaka Raju,Stability of moderately thick rectangular plates using a high precision triangular finite element,Comp.and Struct.,5(1975),257. [8] Luo,J.W.,A hybrid/mixed model finite element analysis for buckling of moderately thick plates,Comp.and Struct.,15,(1982),359. [9] Rock,T.A.and E.Hinton,A finite element method for the free vibration of plates allowing for transverse shear deformation,Comp.and Struct.,6(1976),37. [10] Hinton,E.,and N.Bićanić,A comparison of Lagrange and Serendipity Mindlin plate elements for free vibration analysis,Comp.and Struct.,10(1979),483. [11] Timoshenko,S.P.and J.M.Gere,Theory of Elastic Stability,2nd ed.,McGraw-Hill(1961). [12] Srinivas,S.and A.K.Rao.Buckling of thick rectangular plate,AIAAJ.,7(1969),1645. |