[1] Chang, K.W. and F.A. Howes, Nonlinear Singular Perturbation Phenomena: Theory and Applications, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo (1984).
[2] O'Malley, R.E., Introduction to Singular Perturbation, Academic Press, New York, London (1974).
[3] Chang, K.W. and Lin Zong-chi, Singular perturbation of nonlinear boundary value problem, Applied Mathematics and Mechanics, 5, 5 (1984), 1571-1579.
[4] Kelley, W.G., A nonllnear singular perturbation problem for second order systems, SIAM J. Math. Anal., 10, 1 (1979), 32-37.
[5] Howes. F.A., Singularly perturbed semilinear systems, Studies in Applied Math., 61 (1979), 185-209.
[6] O'Donnell, M.A., Boundary and corner layer behavior in singularly perturbed semilinear system of boundary value problem, SIAM, J. Math. Anal., 2 (1984).
[7] Chang, K.W. and G.X. Liu, Boundary and angular layer behavior in singularly perturbed semilinear system, Appl. Math, and Mech., 5, 3 (1984), 1309-1316.
[8] Chang, K.W. and Lin Zong-chi, Singular perturbation for a class of semilinear second order systems with perturbation both in boundary and in operator, Acta Mathematica Scientia, 5, 2 (1985), 223-241.
[9] Kelley, W.G., A geometric method of studying two point boundary value problems for second order systems, Rocky Mountain J. Math., 7 (1977), 251-263. |