[1] Zhu Zheng-you and Cheng Chang-jun, General mathematical theory of large deflections of thin plates with some holes, Acta Mech. Sinica, 2, 3(1986), 278-288; Proc. ICNM, Shanghai (Oct. 1985), 428-432. [2] Cheng Chang-jun and Lü Xiao-an, General mathematical theory of large deflections of thin plates with some holes(Continued), Acta Mech. Sinica, 21, 2(1989), 193-203. (in Chinese). [3] Berger, M., On yon Kármán equation and the buckling of a thin elastic plate Ⅰ: The clamped plate, Comm. Pure Appl. Math., 20, 4 (1967), 687-719. [4] Berger, M. and P. File, On von kármán equation and the buckling of a thin elastic plate Ⅱ, Comm. Pure Appl. Math., 21, 3 (1968), 227-241. [5] Adams, R. A., Sobolev Spaces, Academic Press, New York (1975). [6] Rektorys, Karel, Variational Methods in Mathematics, Science and Engineering, D. Reidel Publishing Company(1975). [7] Chien Wei-zang, Generalized Variational Principles, Science Press (1985), (in Chinese). [8] Berger, M., An eigenvalue problem for non-linear elliptic partial differential equation, Trans. A. M. S., 120(1965), 154-184. [9] Agnon, S., The Lp approach to the Dirichiet problem, Ann. Scuola di Pisa, 13(1959), 504-448. [10] Dunford, Nelson and Jacob T., Schwartz, Linear Operators, Part Ⅰ: Generai Theory, INC., New York (1958). [11] Zhu Zheng-you and Cheng Chang-jun, Numerical Methods on Bifurcation Solutions, Lanzhou University Press, Lanzhou, China (1989). (in Chinese). [12] Chow, Shui-nee and Jack K. Hale, Methods of Bifurcation Theory, Springer-Verlag, New York, Berlin, Heidelberg (1982). |