[1] Caristi,J.,Fixed point theorem for mappings satisfying inwardness conditions,Trans.Amer.Math.Soc.,215(1976),241-251. [2] Dancs,M.H.and P.Medvegyev,A general ordering and fixed point principle in complete metric spaces,Acta Sci.Math.,46(1983),381-388. [3] Ekeland,I.,Nonconvex minimization problems,Bull.Amer.Math.Soc.(New Series),1(1979),443-474. [4] Park,S.,J.Korean Math.Soc.,19(1983),143-151. [5] Schweizer,B.and A.Sklar,Statistical metric spaces,Pacific J.Math.,10,(1960), 313-334. [6] Schweizer,B.,A.Sklar and E.Thorp,The metrization of statistical metric spaces,Pacific J.Math.,10(1960),673-675. [7] Schweizer,B.and A.Sklar,Probabilistic Metric Spaces,North-Holland(1983). [8] Shi Shu-zhong,The equivalence between Ekeland’s variational principle and Caristi’s fixed point theorem, Advan. Math., 16 (1987), 203-206.(in Chinese) [9] Zhang Shi-sheng and LuoQun, Set-valued Caristi's fixed point theorem and Ekeland's variational principle,Applied Math,and Mech.,10,2(1989),119-121. [10] Zhang Shi-sheng,Chen Yu-qing and Guo Jin-li,Ekeland’s variational principle andCaristi’s fixed point theorem in probabilistic metric spaces,Acta Math.Appl.Sinica,3(1991) |