[1] Liu Gui-lin et al., Relative motion dynamics of variable mass nonholonomic mechanics system, Acta Mechunicw Sinicor, 21, 6(1989), 742-748. (in Chinese)
[2] Luo Shao-kai, Higher order Gibbs-Appell Method of variable mass system in noninertial reference frames, Huanghuai Journal, 7, 3(1991),11-21.(in Chinese)
[3] Luo Shao-kai, The B-H equations of variable mass higher order nonholonomic system in noninertial reference frame, Chinese Science Bulletin, 37, 10(1992), 878-880.
[4] Whittaker, E. T., A Treatise on the Analytical Mechanics of Particles and Rigid Bodies, 4th Ed., Cambridge Press(1952), 269-271.
[5] Djukic, Dj. S., Integral invariant in classical nonconservative dynamical system, Acta Mechanica, 23(1975), 291-296.
[6] Vujanovic. B., A variational principle for nonconservative dynamical system, ZAMM, 55 (1975), 321-331.
[7] Liu Cheng-qun and Luo Shi-yu, Integral invariant of nonconservauve systems and its application in modern physics, Applied Mathematio.s and Mathematics and Mechanics(English Ed.)6, 10(1985), 949-956.
[8] Liu Duan, About the basic integral variants of holonomic onconservative dynamical system, Acta Mechanica Sinica, 23, 5(1991),617-625. (in Chinese)
[9] Mci Feng-xiang, The first integral and integral invariant of nonholonomic system, Chinese Science Bulletin, 36, 11(1991),815-818.
[10] Li Zi-ping, Poincare-Cartan integral invariants of nonholonomic singular systems, Huanghuai Journal, 8, 2(1992), 1-6.
[11] Luo Shao-kai, Generalized Noether theorem of nonholonomic nonpotential system in noninertial reference frames, Applied Mathematics and Mechanics(English Ed.)12, 9 (1991),927-934.
[12] Luo Shao-kai, Caeneralized Noether theorem of variable mass high-order nonholonomic system in nonincrtial reference frames, Chinese Science Bulletin, 36, 22 (1991),1930-1932.
[13] Novoselov, V. S., Variatinal Methods in Mechanics, LUG(1966), 49-51.(in Russian). |