[1] Lemke. C. E., Bimatrix equilibrium points and mathematical programming, Management Sci., 11(1965 ), 681-689.
[2] Cottle, R. W. and G. B. Dantzig, Complementarily pivot theory of mathematical programming, Linear Algebra Appl.,1(1968). 163-185.
[3] Karamardian, S.. Generalized complementarily problem, J. Oprim Tlreorv Appl., 8(1971),161-168.
[4] Noor, M.A., On the nonlinear complementarily problem, J. Math. ,Anal. ,Appl,123(1987), 455-460.
[5] Chang, S. S. and N. J. Huang. Generalized mullivalued implicit complementarily problem in Hilbert space,Math. Japanica. 36. 6(1991)1093-1100.
[6] Ding. X. P., Existence and iterative methods of solutions for generalized strongly non-linear implicit complementarily problem, J. Sichuan Normal Univ. 16, 4(1993), 30-36.(in Chinese)
[7] Noor, M. A., General quasi-complementarily problems, Math. Japanica. 36, 1(1991).113-119.
[8] Kinderlehrar, D. and G. Stampacchia, An Introduction to Variatinal Inequalities and Their Applications Acad. Press, New York(1980).
[9] Noor, M .A., An iterative scheme for a class of quasi-variational inequalities, J. Math.Anal. Appl.,110(1985), 463-468.
[10] Nadler, Jr., S. B., Multivalued contraction mappings, Pacific J. Math., 30(1969), 475-488.
[11] Ishikawa, S., Fixed points by a new iterative method. Proc. Amer. Math. Soc.,44(1974).147-150. |