Duan Mei;Miyamoto Yutaka;Zhou Benkuan;Chen Dapeng. ON THE ERROR ESTIMATE OF H-CONVERGENCE IN QUADRILATERAL ELEMENTS. Applied Mathematics and Mechanics (English Edition), 1995, 16(12): 1123-1131.
[1] P. G. Cialet. The Finite Element method for Elliptic Problems. NorthHolland.Amsterdam(1978).
[2] G. Strang and G. F. Fix, An Analysis of the Finite Element Method.Prentice-Hall.Englewood Cliffs. N. J.(1973).
[3] I. Babuska and A. K. Aziz, Survey lecture on the mathematical foundation of the finite element method. in The Mathematical Foundations of the FEM with Applications to Partial Differential Equations.Ed.A.K.Aziz Academic Press.N.Y.(1972),3-382.
[4] M. K. Georges and M.S. Shephard, Automated adaptive two-dimensional system for the hp-version of the finite element method, Int. J.Num.Mettt. Eng.,32. 4(1991).
[5] I. Babuska, R. B. Kellogy and J.Pitkaranta. Direct and inverse error estimates for finite element with mesh refinements.Numer.Math.,33(1979). 447-471.
[6] W. Gui and I. Babuska, The h. p and h-P version of the finite element method in one dimension, Part III-the adaptive h-p version. Numer.Math.,49(1988),659-684.
[7] I. Babuska and M. Vogelius, Feedback and adaptive finite element solution of one dimensional boundary value problems, Numer.Math.,44(1984). 75-102.
[8] D. W. Wang, I. N. Katz and B. A. Szabo h-and p-version finite element analysis of a rhombic plate. Int. J. Num. Eng.,20(1984), 1399-1405.
[9] J. Z. Zhu and O. C. Zienkiewicz, Adaptive techniques in the finite element method.Commun. Appl. Numer. Meth.,4(1988),197204.