[1] W. E. Roth, The equation AX-YH=C and AX-XB=C in matrices.Proc.Amer.Math.Soc.,97(1952),392-396.
[2] S. Barnett and C. Storey, Soma applications of Liapunov matrix equations, J. Inst.Math.Appl.,4,1(1968).33-42.
[3] A. Iameson, Solution of the equation AX+XB=C by inversion of an M譓 or N譔 matrix,SIAM J.Appl.Math.,16(1968).1020-1023.
[4] P. Lancaster, Explicit solution of Imear matrix equations, SIAM Rev.,12(1970). 544-566.
[5] D. H. Carlson and B. N. Datta. The Liapunov matrix equaiton SA+A*S=S*B*BS Linear Algebra Appl.,28(1979).43-53.
[6] Eurice de Souza and S. P. Bhattacharyya. Controllability.observability and the solution of AX-XB=C.Linear Algebra Appl.,39(1981).167-188.
[7] T. E. Djaferis and S. K. Mitter. Algebraic methods for the study of some linear matrix equations.Linear Algebra Appl.,44(1982).125-142.
[8] J. K. John Jones and C. Lew. Solutions of Liapunov matrix equation BX-XA=C.IEEE Trans.Automatic AC-27(1982)464-466.
[9] Gao Weixing, Continued-fraction solution of matrix equation AX-XB=C.Scientia Sinica Ser.A.,32(1989).1025-1035.
[10] H. K. Wimmer, Linear matrix equaiton: the module theoretic approach, Lemear Algebia Appl.,120(1989).149-164.
[11] Ma Er-chieh, A finite series solution of the matrix equation. AX-XB=C.SIAM J.Appl., Math.,14(1966).490-495.
[12] B. N. Dana and h. Dana. The matrix equation XA=ATX and an assocrated algonthm for solving the inertia and stability problems.Lmear Algebra Appl.,97(1987).103-119.
[13] Guo Zhongheng, T. H.Lehman, Liang Haoyun and C-S.Man Twirl tensors and the tensor equation AX-XA=C.J.Elascity.27.2(1992).227-245.
[14] C. D. Luehr and M.B. Ruhm, The synificance of projector operators in the spectral representation of symmetric second order tensors, Comput.Methods.Appl.Mech.Engre.84(1990).243-246.
[15] Guo Zhongheng, Li Jianbo Xiao Heng and Chen Yuming, Intrinsic solution to the n-dimensional tensor equation Σr-1mUm-r譛r-1=C.Comput.Methods Appl.Mech.Engrg.115(1994).359-364. |