[1] B. J. Bellhouse, Velocity and pressure distributions in the aortic valve, J. Fluid Mech., 37(1969), 587.
[2] B. J. Bellhouse and L. Talbot, The fluid mechanics of the aortic valve, J. Fluid. Mech., 35(1969), 721.
[3] N. V. Gillani and W. M. Swanson, Time-dependent laminar incompressible flow through a spherical cavity, J. Fluid Mech., 78 (1976), 99.
[4] J. L. Mercer, The movements of the dog's aortic valve studied by high-speed cineangiography, Brit. J. Radiol., 46 (1973), 344.
[5] A. A. Van Steenhoven and M. E. H. Van Dongen, Model studies of the closing behaviour of the aortic valve, J. Fluid Mech., 90, 1(1979), 21-32.
[6] C. S. F. Lee and L. Talbot, A fluid-mechanical study of the closure of heart valves. J. Fluid Mech., 91, 1 (1979), 41-63.
[7] T. K. Hung, Hydrodynamic analysis of the aortic valve mechanics, Adv. Cardiovasc Phrs., 5, 1 (1983), 106-118.
[8] W. M. Swanson and R. E. Clark, Aortic valve leaflet motion during systole, Circulation Res.. 32(1973), 42-48.
[9] M. Lei and Z. H. Kang, Study of the closing mechanism ofnatural heart valves, Appl.and Math. Mech. (English Ed.), 7, 10 (1986), 955- 963.
[10] S. X. Zhao and Z. X. Luo, The status of artificial heart valve, J. Biomed. Eng.. 8, 3(1991), 259-262. (in Chinese)
[11] W. M. Swanson, et al., Flow and pressure measurement in accelerated fatigue testing of prosthetic heart valves, Proc. of Svmp. at 14th Annul. Meeting of AAMT (1979).
[12] T. Belytschko and D. P. Flanagan, Finite element methods with user-controlled meshes for fluid-structure interaction. Comput.Meths. Appl. .Mech. Engrg.,33(1982), 669-688.
[13] W. K. Liu. T. Belytschko and H. Chang, An arbitrary Lagrangian-Eulerian finite element method for path-dependent materials, Compur. Meths. Appl. Mech. Engrg., 58(1986), 227-245.
[14] J. Donea, S. Giuliani and J. P. Halleux, An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions, Comput, Meths. Appl. Mech Engrg., 33 (1982), 689-723.
[15] T. J. R. Hughes, W. K. Liu and T. K. Zimmermann, Lagrangian-Eulerian finite element formulation for incompressible viscous flows, Comput. Meths. Appl. Mech. Engrg., 29(1981), 329-349.
[16] B. Ramaswamy, Numerical simulation of unsteady viscous free surface flow, J. Comput.Physics, 90(1990), 396-430.
[17] D. K. Gartling and E. B. Becker. Finite element analysis of viscous, incompressible fluid flow, Part 1,Comput. Meths. Appl. Mech. Engrg., 8 (1976), 51-60.
[18] D. K. Gartling and E. B. Becker. Finite element analysis of viscous, incompressible fluid flow, Part 2. Comput. Meths. Appl. Mech. Engrg., 8 (1976), 127-138.
[19] W. K. Liu, H. Chang, J. S. Chen and T. Belytschko, Arbitrary Lagrangian-Eulerian Petrov-Galerkin finite elements for nonlinear continua. Comput. :Yfeths. Appl. Mech. Engrg., 68 (1988), 259-310.
[20] S. Q. Zou, Hemodynamics and Cctrdiorascnlar Artificial Organs, Publishing House of Chengdu University of Science and Technology, Chengdu, Sichuan, China(1991). (in Chinese)
[21] C. Cuvelier, A. Segal and A. A. Van Steenhoven, Finite Element .Methods and Navier-Stokes Eguation, Reidel, Dordrecht (1986).
[22] F. N. Van Vosse and A. Segal, A finite element approximation of the unsteady two-dimensional Navier-Stokes equations, Int. J. Num. Meths. Fluids, 6(1986), 427-443.
[23] T. K. Hung and G. B. Schuessler, An analysis of the hemodynamics of the opening of the aortic valves, J. Biomechs.; 10(1977), 597-606.
[24] S. R. Idelsohn, L. E. Costa and R. Ponso, A comparative computational study of blood flow through prosthetic heart valves using the finite element method, J. Biomechs., 18, 2(1985), 97-115.
[25] A. A. Van Steenhoven, T. J. A. G. Duppen and J. W. G. Cauwenberg, In vitro closing behaviour of Bjork-Shiley, St. Jude and Hancock heart valve prostheses in relation to the in vivo recorded aortic valve closure, J. Biomechs., 15, 11 (1982), 841-848.
[26] K. B. Chandran, et al., Effect of prosthetic mural valve geometry and orientation on flow dynamics in a model human left ventricle, J. Biomechs., 22, 1 (1989), 51-65. |