[1] B. J. Bellhouse, Velocity and pressure distributions in the aortic valve, J. Fluid Mech., 37(1969), 587. [2] B. J. Bellhouse and L. Talbot, The fluid mechanics of the aortic valve, J. Fluid. Mech., 35(1969), 721. [3] N. V. Gillani and W. M. Swanson, Time-dependent laminar incompressible flow through a spherical cavity, J. Fluid Mech., 78 (1976), 99. [4] J. L. Mercer, The movements of the dog's aortic valve studied by high-speed cineangiography, Brit. J. Radiol., 46 (1973), 344. [5] A. A. Van Steenhoven and M. E. H. Van, Dongen, Model studies of the closing behaviour of the aortic valve, J. Fluid Mech., 90 (1979), 21-32. [6] C. S. F. Lee and L. Talbot, A fluid-mechanical study of the closure of heart valves, J. Fluid Mech., 91, 1 (1983), 41-63. [7] T. K. Hung, Hydrodynamic analysis of the aortic valve mechanics, Adv. Cardiovasc. Phys., 5, 1 (1983), 106-118. [8] W. M. Swanson and R. E. Clark, Aortic valve leaflet motion during systole, Circulation Res., 32 (1973), 42-48. [9] M. Lei and Z. H. Kang, Study of the closing mechanism of natural heart valves, Appl. Math. and Mech. (Engfish Ed.), 7, 10 (1986), 955-964. [10] S. X. Zhao and Z. X. Luo, The status of artificial heart valve, J. Biomed. Eng., 8, 3(1991), 259-262. (in Chinese) [11] Swanson, et al., Flow and pressure measurement in accelerated fatigue testing of prosthetic heartwalves, Proc. of Symp. at 14th Annul. Meeting of AAMT (1979). [12] T. Belytschko and D. P. Flanagan, Finite element methods with user-controlled meshes for fluid-structure interaction, Comput. Meths. Appl. Mech. Engrg., 33 (1982), 669-688. [13] W. K. Liu, T. Belytschko and H. Chang, An arbitrary Lagrangian-Eulerian finite element method for path-dependent materials, Comput. Meths. App!. Mech. Engrg., 58(1986), 227-245. [14] J. Donea, S. Giuliani and J. P. Halleux, An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions, Comput, Meths. Appl. Mech.Engrg., 33 (1982), 689-723. [15] T. J. R. Hughes, W. K. Liu and T. K. Zimmermann, Lagrangian-Eulerian finite element formulation for incompressible viscous flows, Comput. Meths. Appl. Mech. Engrg., 29(1981), 329-349. [16] B. Ramaswamy, Numerical simulation of unsteady viscous free surface flow, J. Comput. Physics, 90 (1990), 396-430. [17] D. K. Gartling and E. ;3. Becker, Finite element analysis of viscous, incompressible fluid flow, Part 1, Comput. Meths. Appl. Mech. Engrg., 8 (1976), 51-60. [18] D. K. Gartling and E. B. Becker, Finite element analysis of viscous, incompressible fluid flow, Part 2, Comput. Meths. Appl. Mech. Engrg., 8 (1976), 127-138. [19] W. K. Liu, H. Chang, J. S. Chen and T. Belytschko, Arbitrary Lagrangian-Eulerian Petrov-Galerkin finite elements for nonlinear continua, Comput. Meths. Appl. Mech. Engrg., 68 (1988), 259-310. [20] S. Q. Zou, Hemo办namics and Cardiovascular Artificial Organs, Publishing House of Chengdu University of Science and Technology, Chengdu, Sichuan, China (1991). [21] C. Cuvelier, A. Segal and A. A. Van Steenhoven, Finite Element Methods and Navier-Stokes Equations, Reidel. Dordrecht, (1985). [22] F. N. Van Vosse, A. Segal, A finite element approximation of the unsteady two-dimensional Navier-Stokes equations, Int. J. Num. Meths. Fluid., 6 (1986), 427-443. [23] T. K. Hung and G. B. Schuessler, An analysis of the hemodynamics of the opening of the aortic valves, J. Biomechs..10 (1977), 597-606. [24] S. R. Idelsohn, L. E. Costa and R. Ponso, A comparative computational study of blood flow through prosthetic heart valves using the finite element method, J. Biomech., 18, 2(1985), 97-115. [25] A. A. Van Steenhoven, T. J. A. G. Duppen and J. W. G. Cauwenberg, In vitro closing behaviour of Bjork-Shiley, St. Jude and Hancock heart valve prostheses in relation to the vivo recorded aortic valve closure, J. Biomechs.,15, 11 (1982), 841-848. [26] K. B. Chandran, et al., Effect of prosthetic mural valve geometry and orientation on flow dynamics in a model human left ventricle, J. Biomechs.,22, 1 (1989), 51-65. |