[1] V. I. Oseledec, A multiplicative ergodic theorem, Lyapunov characteristic numbers for dynamical systems, Trudv Mosk. Mat. Obsce., 19 (1969), 179-210.
[2] R. J. Sacker and G. R. Sell, A spectral theory for linear differential systems, J.Differential Equations, 27(1978), 320-358.
[3] R. A. Johnson, K. J. Palmer and G. R. Sell, Ergoic properties of linear dynamical systems, SIAM J. Math. Anal., 18(1987), 1-33.
[4] S. T. Liao, On characteristic exponents construction of a new Borel set for the multiplicative ergodic theorem for vector fields, Acta Scientiarunt Naturaliunr Universitatis Pekinensis, 29 (1993), 277-320.
[5] J. Palis and W. Melo, Geometric Theory of Dynamical Systems, Springer-Verlag (1982).
[6] S. T. Liao, Standard systems of differential equations, Acta Mathematica Sinica, 17(1974), 100-109;175-196;270-295. (in Chinese).
[7] S. T. Liao, Notes on a study of vector bundle dynamical systems (I), Applied Mathematics and Mechanics (English Ed.), 16, 9 (1995), 813-823.
[8] Ya. Pesin, Characteristic Lyapunov exponents and smooth ergodic theory, Uspefti Mat. Nauk, 32 (1977), 55-1 12.
[9] C. Pugh and M .Shub, Ergodic Attractors, Trans. AMS., 312 (1989), 1-54.
[10] C. Pugh, The C1+x hypothesis in Pesin theory, Publ. Math. IHES, 59 (1984), 43-161.
[11] H. Fedrer, Geometric Measure Theory, Springer-Verlag (1969).
[12] V. Nemyskii and V. Stepunov, Qualirativo Theory of Differential Equations, Princeton University Press(1960).
[13] P. Wallets, An Introdtrotion to Ergodic Theory, , Springer-Verlag (1982).
[14] S. Lefschetz, Differential Equationt.: Geometric Theory, Wiley 1963).
[15] Liao Shantao, Notes on a study of vector bundle dynamical systems (II)——Part 1, Appl Math and Mech (English Ed.)17 9(1996), 805-818. |