[1] W. X. Ma. Lax representations and Lax operator algebras of isospectral andnonisospcctral hierarchies of evolution equations, J. Math. Phys. , 33 (1992), 2464~2480.
[2] W. X. Ma. An approach for constructing nonisospectral hierarchies of evolutionequations. J. Phys. A: Math. Gen. , 25 (1992), 719~723.
[3] W. X. Ma, The algebraic structure of zero curvature representations and application tocoupled KdV systems, J. Phys. A: Math. Gen., 26 (1993), 2573~2586.
[4] Z. J. Qiao, Generation of soliton hierarchy and general structure of its commutatorrepresentations. Acta Math. APpl, Sin., 18 (1995), 287~301.
[5] A. S. Fokas and R. L. Anderson, On the use of isospectral eigenvalue problem forobtaining hereditary symmetries for Hamiltonian systems, J. Math. Phys., 23 (1982),1066~1082.
[6] G. Z. Tu, An extension of a theorem on gradients of conserved densities of integrablesystems, Northeastern Math. J., 6 (1990), 26~32
[7] C. W. Cao, Nonlinearization of the Lax equation groups for the AKNS hierarchy, Sci.China A. , 33 (1990). 528~536.
[8] C. W. Cao, Commutator representation of isospectral equations, Chin. Sci. Bull., 34(1989). 723~725.
[9] F. K. Guo, Deformation of Lax representations and Lax representations of Hamiltonianequation hierarchies, Acta Math. Sin., 37 (1994), 515~525.
[10] S. V. Manakov. L-A-B representations of integrable systems, Uep. Mat. Nauk, 31 (1976),245~250.
[11] W. X. Ma, Algebraic structure related to L-A-B representations of integrable systems, Chin. Sci. Bull., 37 (1992). 8~12.
[12] Z. J. Qiao. Commutator representations of the D-AKNS hierarchy, Math. Appl., 4, 4(1991), 64~70.
[13] Z. J. Qiao, Lax representations of the Levi hierarchy, Chin. Sci. Bull., 35 (1990), 1353~1354.
[14] W. X. Ma, Commutator representations of the Yang hierarchy of integrable evolutionequations Chin. Sci. Bull., 35 (1990), 1843~1847.
[15l Z. J. Qiao, Lie algebraic structure of operator rclated to the statiolaary systems, Phys.Lett., A 206 (1995). 347~358.
[16] D. Levi, G. Neugebauer and R. Meinel, A new nonlinear Schrodinger equation. itshierarchy and N-soliton solutions, Phys. Lelt., A 102 (1984), 1~8.
[17] Z. J. Qiao, A Bargmann system and involutive representation of solutions of the Levihierarchy, J, Phys. A: Math. Gen., 26 (1993), 4407~4417. |