[1] M. Biroli and U. Mosco. Stability and homogenization for nonlinear variationalinequalities with irregular obstacles and quadratic growth, Nonli. Anal., 7, 1 (1983),41~60.
[2] J. M. Bony, Principle du maximum dans les espaces de Sobolev, C. R. A. S., 265 (1967),333~336.
[3] C. W. Cryer, The solution of the axisymmetric elastic-plastic torsion of a shaft usingvariational inequalities. J. Math. Anal. Appl., 76 (1980), 535~570.
[4] L. C. Evans, A second order elliptic equation with gradient constraint, Communicationsin PDEs., 49 (1979), 557~572.
[5] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear EllipticSystems, Princeton Univ. Press, Princeton (1983).
[6] D. Gilbary and N. S. Trudinger. Elliptic Partial Differential Equations of Second Order,Spring-Verlag, New York (1983).
[7] A. Huber, On the uniqueness of generalized axially symmetric potentials, Ann. of Math.,60, 2 (1954), 351~358.
[8] H. Ishii and S. Koike, Boundary regularity and uniqueness for an elliptic equation withgradient constraint. Comm. in PDEs., 8, 4 (1983), 317~346.
[9] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities andTheir Applications, Acad. Press. New York (1980).
[10] T. W. Ting. Elastic-plastic torsion of convex cylindrical bars, J. Math. Mech., 19 (1969),531~551.
[11] T. W. Ting. Elastic-plastic torsion problem over multiply connected domains, Ann.Scuola Norm Sup., Pisa. 4, 4 (1977), 291~312.
[12] M. Wiegner, The C-character of solutions of sccond order elliptic equations withgradient constraint, Comm. in PDEs., 6, 3 (1981). 361~371.
[13] X. P. Yang, Nonlinear elliptic variational inequalities with unbounded coefficients, J. ofHunan Univ. (Math. Special Series), 15. 1 (1988), 222~231.
[14] S. Z. Zhou, On an axisymmetric free boundary problem, Acta Math. Appl. Sinica, 6, 4(1983). 420~432.
[15] S. Z. Zhou, Variational Inequalities and Their Finite Element Methods, Hunan Univ.Press. Changsha (1988). (in Chinese) |