[1] H. H. Woodson and J. R. Melcher, Electromechanical Dynamics. John Wiley and Sons.New York (1968).
[2] P. Wolfe. Equilibrum states of an elastic conductor in a magnetic field: a paradigm ofbifurcation, Trans.Amer. Math. Soc., 278 (1983), 377~387.
[3] P. Wolfe. Bifurcation theory of an elastic conducting wires subjected magnetic forces, J.Elasticity,, 23, 2~3 (1990), 201~217.
[4] T. J. Healey, Large rotating states of a conducting elastic wire in a magnetic field: subtlesymmetry and multiparameter bifurcation. J. of Elasticity, 24 (1990), 211~227.
[5] T. I. Seidman and P. Wolfe, Equilibrium states of an elastic conducting rod in amagnetic field. Arch. Ralional Mech. Anal., 102, 4 (1988), 3O7~329.
[6] P. Wolfe, Bifurcation theory of an elastic conducting rod in a magnetic field, QuartMech. APPl. Math. 41, 2 (1988), 265~279.
[7] P. Wolfe, Bifurcation theory of a conducting rod subjected to magnetic forces, Int. JNonlinear Mechanics, 25, 5 (1990), 597~604.
[8] S. S. Antman. Ordinary differential equations of one dimensional nonlinear e1asticity.Arch. Rational Mech. Anal. 61 (1976), 3O7~393.
[9] E. Bujano, G. Geymoat and T. Poston, Post-buckling behavionar of nonlinearyhyperelastic thin rod with cross-section invariant under the dihedral group Dn., Arch.Rational thech. Anal.. 89 (1985), 307~388.
[10] Zhu Zhengyou and Cheng Changiun, Numerical Melhod for Bifurcation Problems,Lanzhou University Press, Lanzhou (1989). (in Chinese) |