[1] E. J. Haug. Computer Aided Kinemanics and Dynamics of Mechanical Systems.Vol.1:Basic Methods. Ally & Bacon. Boston-MA (1989).
[2] F. A. Potra and W. C. Rheinbolt. On the numerical solution of Euler-Lagrangeequations. Mechamics of Structures & Machimes. 19-1 (1991). 1~18.
[3] J. W. Baumgarte. A new method of stabilization for holonomic constraints, J. AppliedMechanics. 50 (1983), 869~870.
[4] R. P. Singh and P. W. Likins. Singular value decomposition for constrained dynamicalsystems. J. Applied Mechanics. 52 (1985), 943~948.
[5] S. S. Kim and M. J. Vanderploeg. QR decomposition for state space representation ofconstrained mechanical dynamic systems. J.,Mech. Tran. & Auto. in Design. 108 (1986).168~183.
[6] C. G. Liang and G. M. Lance. A differential null space method for constrained dynamicanalysis, J.,Mech. Tran. & Auto . in Design , 109 (1987), 405~411.
[7] O. P. Agrawal and S. Saigal. Dynamic analysis of multibody systems using tangentcoordinates. Computers & Structures . 31. 3 (1989), 349~355.
[8] J. W. Kamman and R. L. Huston, Constrained multibody systems-An automate dapproach.Computers & Structures. 18, 4 (1984). 999~1112.
[9] F. A. Potra and J. Yen, Implicit integration for Euler-Lagrange equations via tangentspace parameterization. Mechamics of Structures & Machiunes, 19, 1 (1991), 77~98.
[1O] Hong Jiazhen and Liu Yanzhu, Computational dynamics of multibody systems.Advancement of Mechanics. 19. 2 (1989), 205~210. (in Chinese).
[11] Wang Deren. .Numerical Methods for Nonlinear Equations and Optimization Techmiques.People's Education Press. Beijing (1980). (in Chinese)
[12] Pan Zhenkuan. The modelling theory and numerical study for dynamics of flexible multibody systems. Doctoral dissertation, Shanghai Jiao tong University (1992). (inChinese)
[13] Pan Zhenkuan, Zhao Weija,Hong Jiazhen and Liu Yanzhu. On numerical techniquesfor differential/algebraic equations of motion of multibody system dynamics.Advancement of Mechanics, 26. 1 (1996), 28~4O. (in Chinese) |