[1] G.Godbillion, Geometrie Differentielle et Mecanique Analytique, Hermann, Paris (1969). [2] V.I.Arnold, Mathematical Method of Classical Mechanics, Springer-Verlag, New York(1978). [3] R.Abraham and J.E.Marsden, Foundations of Mechanics, 2nd ed., The Benjamin/Cumming Publishing Company (1978). [4] Met Fengxiang, Liu Duan and Luo Yong, Advanced Analytical Mechanics, PekingInstitute of Technology Press, Beijing (1991).(in Chinese). [5] D.Chinea, M.de leon and J.C.Marrero, The constraint algorithm for time-dependent Lagran gians, J.Math.Phys., 35, 7 (1994), 3410-3438. [6] E.Cartan, Sur les Varietes a connexion affine at la theorie de la relativite generalistee, Anliales de L' Ecole Nol)lale Sllperieure, 40 (1923), 325 -412. [7] E.Cartan, Sur ies Varietes a connexion affine at la theorie de la relativite generalistee, Anllales de L' Ecole Nomale Superieure, 41 (1924), 1 -25. [8] M.de leon and P.R.Rodrigues, Methods of Differential Geometry in Analytical Mechanics, North Holland, Amsterdam (1989). [9] W.Sarlet, A.Vandecasteele and F.Cantrijn, Derivations of forms along a map : theframework for time-dependent second-order equations, Diff.Geom.Appl, 5 (1995), 171 -203. [10] Echeverria-Enriquez, M.C.Munoz-Lecanda and N.Roman-Roy, Non-standardconnections in classical mechanics, J.Phys.A: Math Gen., 28 (1995).5553-5567. [11] G.S.Hall and B.M.Haddow, Geometrical aspects and generalizations of Newton Cartan mechanics, Int J.Theor.Phys., 34, 7 (1995), 1093-11 12. [12] S.Kobayashi and K.Nomizu, Foundations of Differential Geometry, J.Willey and Sons, New York (1963). |