[1] Packard N H, Crutchifield J P, Farmer J D, et al. Geometry from a time series[J]. Phys Rev Lett,1980,45(6):712-716.
[2] Takens F, Mane. Detecting strange attractors in fluid turb ulence[A]. In: Rand D A, Young L S, Eds.Dynamical Systems and Turbulence[C]. Vol.898 of Lecture Notes in Mathematics,Berlin: Springer, 1986,366.
[3] Berndt Pilgram, Kaplan Daniel T. A comparison of estimator s for 1/f noise[J]. Phys D,1998,114(3):108-122.
[4] Casdagli M, Eubank S, Farmer J D, et al. State space recon struction in the presence of noise[J]. Phys D,1991,51(1):52-98.
[5] YING Cheng-lai, David Lerner. Effective scaling regime for computin g the correlation dimension from chaotic time series[J]. Phys D,1998,115(5):1-18.
[6] Badii R, Broggi G, Derighetti B, et al. Dimension increase in filtered ch aotic signals[J]. Phys Rev Lett,1988,60(4):979-984.
[7] Mitschke F. A causal filters for chaotic signals[J]. P hys Rev A,1990,41:1169-1171.
[8] Scargle J D. Studies in astronomical time series analysis Ⅳ, Model ing chaotic and random processes with linear filters[J]. Astrophys J,1990, 359(12):469-482.
[9] Broomherd D S. Extracting qualitatire dynamics from experi mental data[J]. Phys D,1987,20(11):217-236.
[10] Gibson J F, Casdagli M, Eubank S, et al. An analystic approach to proc tical state space reconstruction[J]. Phys D,1992,57(7):1 -30.
[11] Liebert W, Pawalzik K, Schuster H G. Optimal embeddings of chaoti c attractors from topological considerations[J]. Europ Physics Lett,1991, 14(8):521-526.
[12] CHEN Yu-shu, MA Jun-hai, LIU Zeng-rong. The state space reconstru ct ion technology of different kinds of chaotic data obtained from dynamical system[J]. Acta Mechanica Sinica,1999,15(1):82-92.
[13] 马军海. 混沌时序动力系统非线性重构[D]. 天津: 天津大学力学系,1 997.
[14] YING Cheng-lai, David Lerner. Effective scaling regime for compu ti ng the correlation dimension from chaotic time series[J]. Phys D,1998,115(5):1-18.
[15] Theiler J. Statistical precision of dimension estimators[J]. Phys Rev A,1990,41(6):3038-3051. |