[1] de Boer R.Highlights in the historical development of the porous media theory:toward a consistentmacroscopic theory[J].Appl Mech Rev,1996,49(4):210~262.
[2] Prevost H.Mechanics of continuous porous media[J].Internat J Engrg Sci,1980,18(6):787~800.
[3] M ow V C,Kuei S C,Lai W M,et al.Biphasic creep and stress relaxation of articular cartilage incompression:theory and experiments[J].J Biomech Eng,1980,102(1):73~84.
[4] de Boer R,Ehlers R,Liu Z.One-dimensional transient wave propagation in f luid-saturatedincompressible porous media[J].Arch Appl Mech,1993,63:59~72.
[5] de Boer R,Liu Z.Plane waves in a semi-infinite fluid-saturated porous medium[J].Transport inPorous Media,1994,16:147~173.
[6] de Boer R,Liu Z.Propagation of acceleration waves in incompressible liquid-saturated poroussolids[J].Transport in Porous Media,1995,21:163~173.
[7] YAN Bo,LIU Zhan-fang,ZHANG Xiang-wei.Finite element analysis of wave propagation influid-saturated porous media[J].Applied Mathematics and Mechanics(English Edition),1999,20(12):1331~1341.
[8] YAN Bo,LIU Zhan-fang,ZHANG Xiang-wei.Finite element method for quasi-static problems offluid-saturated porous media[J].Chinese Journal of Applied Mechanics,2000,17(1):91~96.(in Chinese)
[9] YAN Bo,LIU Zhan-fang,ZHANG Xiang-wei.A f inite element method for quasi-static problemsof two-phase porous media[J].Journal of Chongqin g University,2000,23(1):41~44.(inChinese)
[10] Lai W M,M ow V C.Drag-induced compression of articular cartilage during a permeationexperiment[J].Biorheology,1980,17(1-2):111~123. |