[1] Zhang J W. A simplified perturbation solution to the large deflection K rm n equations of orthotropiccomposite plates in axial compression and lateral pressure[J]. In genieur-Archiv (Arch Appl Mech ) ,1991, 61(3):174~182. [2] Zhang J W, Shen H S. Postbuckling of orthotropic rectangular plates in biaxial compression[J]. ASCE J Engng Mech, 1991, 117(5):1158~1170. [3] Zhang Jianwu. Investigation to the buckling and postbuckling behavior of shear-f lexible plates ofcomposite construction[J]. Acta Mechanica Sinica, 1994, 26(2):176~182. (in Chinese) [4] Zhang Jianwu. Lin Zongqin. K rm n type refined theory and postbuckling of shear-def ormable composite plates [J]. Journal of Shan ghai Jiaoton g University, 1994, 28(4):115~120. (in Chinese) [5] Shen Huishen. Buckling and postbuckling of moderately thick plates [J]. Applied Mathematics andMechanics (English Ed ), 1990, 11(4):367~376. [6] Reissner E. On the theory of bending of elastic plates[J]. J Math Phys, 1944, 23:184~191. [7] M indlin R D. Inf luence of rotatory inertia and shear on fluctuat motions of isotropic elastic plates[J] .ASME J Appl Mech, 1951, 18:31~38. [8] Reddy J N. A simple higher-order theory for laminated composite plates[J]. J Appl Mech, 1984,51:745~752. [9] Reddy J N, Phan N D. Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory[J]. J Sound Vibration, 1985, 98:157~170. [10] Kyoung Woo-Min, Kim Chun-Gon. Delamination buckling and growth of composite laminatedplates with transverse shear deformation[J]. Journal of Compostie Materials, 1995, 29(15):2047~2068. [11] Bogdanovich A E, Deepak B P. Three-dimensional analysis of thick composite plates with multiplelayers[J]. Composites Part B, Engineerin g, 1997, 28B(4):345~357. [12] Alwan A M. Large deflection of sandwich plates with orthotropic core[J]. AIAA J, 1964, 2(2 ) :1820~1822. |