A CLASS OF SINGULARLY PERTURBED GENERALIZED BOUNDARY VALUE PROBLEMS FOR QUASI-LINEAR ELLIPTIC EQUATION OF HIGHER ORDER
MO Jia-qi1, OUYANG Cheng2
1. Department of Mathematics, Anhui Normal University, Wuhu 241000, P. R. China; 2. Department of Mathematics, Huzhou Teachers College, Huzhou 313000, P. R. China
MO Jia-qi;OUYANG Cheng. A CLASS OF SINGULARLY PERTURBED GENERALIZED BOUNDARY VALUE PROBLEMS FOR QUASI-LINEAR ELLIPTIC EQUATION OF HIGHER ORDER. Applied Mathematics and Mechanics (English Edition), 2001, 22(3): 372-378.
[1] MO Jia-qi. A class of singularly perturbed reaction diffusion integral differential system[J]. Acta Math Appl Sinica, 1999,15(1): 19-23. [2] MO Jia-qi. A class of singularly perturbed boundary value problems for nonlinear difterential systems[J]. J Systmes Sci Math Scis, 1999,12(1):56-58. [3] MO Jia-qi. A class of singularly perturbed problems with nonlinear reaction diffusion equation[J].Advance in Mathematics, 1998,27 (1): 53-58. [4] MO Jia-qi, CHEN Yu-sen. A class of singularly perturbed for reaction diffusion systems with nonlo cal boundary conditions [J]. Acta Math Sci, 1997,17 (1): 25-30. [5] MO Jia-qi. A class of singularly perturbed reaction diffusion systems[J]. Applied Mathematics and Mechanics (English Edition) , 1997,18 (3): 273-277. [6] MO Jia-qi. A singularly perturbed nonlinear boundary value problem[J]. J Math Anal Appl, 1993,178 (1): 289-293. [7] MO Jia-qi. Singular perturbation for a class of nonlinear reaction diffusion systems[J]. Science in China, Ser A, 1989,32(11): 1306-1315. [8] MO Jia-qi, Singular perturbation for a boundary value problems of fourth order nonlinear differential equation[J]. Chinese Ann Math, 1987,8B (1):80-88. [9] De Jager E M, JIANG Fu-ru. The Theory of Singular Perturbation[M]. Amsterdam: North-Holland Publishing Co, 1996.