[1] TU Gui-zhang. The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems[J]. J Math Phys,1989,30(2):330-338.
[2] TU Gui-zhang. On Liouville integrability of zero-curvature equations and the Yang hierarchy[J]. J Phys A: Math Gen,1989,22(13):2375-2392.
[3] TU Gui-zhang. A trace identity and its applications to the theory of discrete integrable systems[J]. J Phys A: Math Gen,1990,23(17):3903-3922.
[4] CAO Ce-wen.Nonlinearization of Lax system for the AKNS hiearch[J].Science in China A,1990,33(3):528-536.(in Chinese)
[5] CAO Ce-wen, GENG Xian-guo. Classical integrable systems generated through nonlinearization of eigenvalue problems[Z]. In: C H Gu Ed. Research Reports in Physics[R]. Berlin: Springer-Verlag,1990,68-78.
[6] CAO Ce-wen, GENG Xian-guo. C neumann and bargmann systems associated with the coupled KdV soliton hierarch[J]. J Phys A: Math Gen,1990,23(18):4117-4125.
[7] GENG Xiang-guo. A hierarchy of nonlinear evolution equation, its Hamiltonian structure and classical integrable systems[J]. Physica A,1992,180(1~2):241-251.
[8] QIAO Zhi-jun. A new completely integrable Liouville's system produced by the Kaup-Newell eigenvalue problem[J]. J Math Phys,1993,34(7):3100-3121.
[9] ZENG Yun-bo. An approach to the deduction of the finite-dimensional integrability form the infinite-dimensional integrability[J]. Phys Lett A,1991,160(6):541-547. |