[1] Ablowitz M J, Clarkson P A. Solitons, Nonlinear Evolution Equations and Inverse Scattering [M]. Cambridge: Cambridge University Press,1991. [2] Gu C H, Li Y S. Tian C, et al. Solitons Theory and Its Applications [M]. Berlin: SpringerVerlag, 1995. [3] GUO Bo-ling, PANG Xiao-feng. Solitons[M]. Beijing: Science Press, 1987. (in Chinese [4] Wang M L, Zhou Y B, Li Z B. Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics[J]. Phys Lett A, 1996,216(1):67-75. [5] Whitham G M. Variational methods and applications to water wave[J]. Proc Roy Soc London Ser A ,1967,299(1):6-25. [6] Broer L J. Approximate equations for long water waves[J]. Appl Sci Res, 1975,31(5):377-395. [7] Kupershmidt B A. Mathematics of dispersive water waves [J]. Comm Math Phys, 1985,99 (1):51-73. [8] Ruan H Y, Lou S Y. Similarity analysis and Painleve property of the Kupershmidt equation[J].Comm Theoret Phys ,1993,20(1):73-80. [9] YAN Zhen-ya, ZHANG Hong-qing. Explicit and exact solutions for nonlinear approximate equations with long wave in shallow water [J]. Acta Phys Sinica, 1999,48(11):1962-1967.(in Chinese) [10] ZHANG Jie-fang. Multiple soliton solutions for the approximate equations of long water wave [J].Acta Phys Sinica, 1998,47(9): 1416-1421. (in Chinese) [11] ZHANG Jie-fang. Multiple solitons-like solutions for (2 + 1)-dimensional dispersive long wave equations[J]. Intern J Theoret Phys, 1998,37(9):2449-2455. [12] Sach R L. On the integrable variant of the Boussinesq system, Painleve property, rational solutions, a related many body system, and equivalence with the AKNS hierarchy[J]. Physica D,1988,30(1): 1-27. [13] FAN En-gui, ZHANG Hong-qing. Backlund transformation and exact solutions for WBK equations in shallow water [J] . Applied Mathematics and Mechanics (English Edition), 1998,19 (8):713 -716. |