[1] Gemant A. On fractional differences[J]. Phil Mag,1938,25(1):92-96.
[2] Bagley R L, Torvik P J. On the fractional calculus model of viscoelasticity behavior[J]. J of Rheology, 1986,30(1): 133-155.
[3] Koeller R C. Applications of the fractional calculus to the theory of viscoelasticity[J]. J Appl Mech, 1984,51(3):294-298.
[4] Rossikhin Y A. Shitikova M V. Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solid[J]. Appl Mech Rev, 1997,50(1): 15-67.
[5] Argyris J. Chaotic vibrations of a nonlinear viscoelastic beam[J]. Chaos Solitons Fractals, 1996,7(1):151-163.
[6] Akoz Y, Kadioglu F. The mixed finite element method for the quasi-static and dynamic analysis of viscoelastic Timoshenko beams[J]. Int J Numer Mech Engng, 1999,44(5): 1909-1932.
[7] CHEN Li-qun, CHENG Chang-jun. Dynamical behavior of nonlinear viscoelastic beam[J].Applied Mathematics and Mechanics (English Edition), 2000,21(9):995-1001.
[8] Samko S G, Kilbas A A, Marichev O L. Fractional Integrals and Derivatives: Theory and Application[M]. New York: Gordon and Breach Science Publishers, 1993.
[9] LUO Zu-dao, LI Si-jian. Mechanics of Anisotropic Materials[M]. Shanghai: Shanghai Jiaotong University Press, 1994. (in Chinese)
[10] Spinelli R A. Numerical inversion of a Laplace transform[J]. SIAM J Numer Anal, 1966,3(4):636-649.
[11] LIU Yan-zhu, CHEN Wen-liang, CHEN Li-qun. Mechanics of Vibrations[M]. Beijing:Advanced Educational Press, 1998. (in Chinese) |