[1] Hill R. Acceleration waves in solids[J]. Journal of the Mechanics and Physics of Solids, 1962,10(1):1-16.
[2] Bazant Z P, Belytschko T B. Wave propagation in a strain softening bar:exact solution[J]. ASCE Journal of Engineering Mechanics, 1985,111 (3):381-389.
[3] Sluys L J, Muhlhaus H B, Borst Rde. Wave propagation, localization and dispersion in a gradientdependent medium[J]. lnt J Solids Structures, 1992,30(9): 1153-117l.
[4] Sluys L J, Wave propagation, localization and dispersion in softening solids. Dissertation[D].Delft University of Technology, Delft, 1992.
[5] Rudnicki K, Rice J R. Conditions for the localization of deformation in pressure-Sensitive dilatant materials[J]. Journal of the Mechanics and Physics of Solids, 1975,23: 371-394.
[6] Rice J R. On the stability of dilatant hardening for saturated rock masses[J]. Journal of Geophysical Research, 1975,80: 1531-1536.
[7] Loret B, Prevost J H. Dynamic strain localization in fluid-saturated porous media[J]. Journal of Engineering Mechancis, 1991,117(4):907-922.
[8] Pietruszczak S. Undrained response of granular soil invilving localized deformation[J]. Journal of Engineering Mechanics, 1995,121(12): 1292-1297.
[9] Gajo A. The effects of inertial coupling in the interpretation of dynamic soil tests[J]. Geotechnique, 1996,46(2):245-257.
[10] Runesson K, Peric D. Effect of pore fluid compressibility on localization in elastic-plastic porous solids under undrained conditions[J]. Int J Solids Structures, 1996,33(10):1501-1518.
[11] Biot M A. Theory of three-dimensional consolidation[J]. J Applied Physics, 1941,12: 155-164.
[12] Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. Ⅰ. Lowfrequency range[J]. The Journal of the Acoustical Society of America, 1956,28(2):168-178.
[13] Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. Ⅱ . Higher frequency range[J]. The Journal of the Acoustical Society of America, 1956,28(2):179-191.
[14] Zienkiewicz O C, Shiomi T. Dynamic behavior of saturated porous media: the generalized Biot formulation and its numerical solution[J]. Int J Numerical and Analytical Methods in GeoMechanics, 1984,8 (1): 71-96.
[15] LI Xi-kui, Zienkiewicz O C, XIE Y M. A numerical model for immiscible two-phase fluid flow in a porous medium and its time domain solution[J]. Int J Numer Methods Eng, 1990,30(6): 1195-1212.
[16] LI Xi-kui, Zienkiewicz O C. Multiphase flow in deforming porous media and finite element solution[J]. Computers & Structures, 1992,45(2):211-227.
[17] Lewis R W, Schrefler B A. The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media[M]. England: John Wiley & Sons Ltd, 1998.
[18] Lewis R W, Sukirman Y. Finite element modelling for simulating the surface subsidence above a compacting hydrocarbon reservoir[J]. Int J Numerical and Analytical Methods in Geo-Mechanics,1994,18: 619-639.
[19] Meroi E A, Schrefler B A. Large strain static and dynamic semi-saturated solild behavior[J]. Int J Numerical and Analytical Methods in Geo-mechanics , 1995,19: 81-106.
[20] LI Xi-kui, Thomas H R, Fan Y Q. Finite element method and constitutive modelling and computation for unsaturated soils[J]. Computer Methods in Applied Mechanics and Eng, 1999,169(1-2):135-159.
[21] Alonso E E, Gens A, Josa A. A constitutive model for partially saturated soils[J]. Geotechnique,1990,40(3): 405-430.
[22] Zienkiewicz O C, Taylor R. The Finite Element Method, Vol. 2[M]. England: ButterworthHeinemann, 2000.
[23] Duxbury P G, LI Xi-kui. Development of elasto-plastic material models in a natural co-ordinate system[J]. Computer Methods in Applied Mechanics and Eng, 1996,135(3-4):283-306.
[24] LI Xi-kui, Cescotto S. A mixed element method in gradient plasticity for pressure dependent Materials and modelling of strain localization[J]. Computer Methods in Applied Mechancis and Engineering, 1997,144(3-4): 287-305. |