[1] Shepherd T G. Nonlinear saturation of baroclinic instability. Part-one: the two-layer model[J].Journal of the Atmospheric Sciences, 1988, Vol .45(14):2014-2025.
[2] Shepherd T G. Nonlinear saturation of baroclinic instability. Part-two: Continuously-statified fluid[J]. Journal of the Atmospheric Sciences, 1989,46(7):888-907.
[3] Shepherd T G. Nonlinear saturation of baroclinic instability. Part-Three: bounds on the energy[J].Journal of the Atmospheric Sciences, 1993, Vol. 50(16):2697-2709.
[4] ZENG Qing-cun. Variational principle of instability of atmospheric motions[J]. Adv Atmos Sci,1989,6(2): 137-172.
[5] MU Mu. Nonlinear stability theorem of two-dimensional quasi-geostrophic motions geophys astroph[J]. Fluid Dynamics, 1992,65:57-76.
[6] MU Mu, Shepherd T G, Swanson K. On nonlinear symmetric stability and the nonlinear saturation of symmetric instability[J]. J Atmos Sci, 1996,53(20):2918-2923.
[7] Cho H R, Shepherd T G, Vladimirov V A. Application of the direct Liapunov method to the problem of symmetric stability in the atmosphere[J]. J Atmos Sci, 1993,50(6):322-334.
[8] ZHANG Gui. Nonlinear stability theorem for the generalized-phillips model[J]. Journal of Air Force Institute of Meteorology, 1979,20(2): 133-143. (in Chinese)
[9] MU Mu, ZENG Qing-cun, Shepherd T G, et al. Nonlinear stability of multilayer quasi-geostrophic flow[J]. J Fluid Mech, 1994,264: 165-184.
[10] Paret J, Vanneste J. Nonlinear saturation of haroclinic instability in a three-layer model[J]. J Atmos Sci, 1996,53(20) ,2905-2917. |