[1] Foias C,Manley O P,Temam R.M odellization of the interaction of small and large eddies in two dimensional turbulent flows[J].Math Mod Numer Anal,1988,22(1):93-114. [2] Marion M,Temam R.Nonlinear Galerkin methods[J].SIAM J Numer Anal,1989,2(5):1139-1157. [3] Foias C,Jolly M,Kevrekidis I G,et al.Dissipativy of numerical schemes[J].Nonlinearity,1991,4(4):591-613. [4] Devulder C,Marion M,Titi E.On the rate of convergence of nonlinear Galerkin methods[J].Math Comp,1992,59(200):173-201. [5] Marion M,Temam R.Nonlinear Galerkin methods:the finite elements case[J].Numer Math,1990,57(3):205-226. [6] Marion M,Xu J C.Error estimates on a new nonlinear Galerkin method based on two-grid finite elements[J].SIAM J Numer Anal,1995,32(4):1170-1184. [7] Ait Ou Ammi A,Marion M.Nonlinear Galerkin methods and mixed f inite element:two-grid algorithms for the Navier-Stokes equations[J].Numer Math,1994,68(2):189-213. [8] Li K T,Zhou L.Finite element nonlinear Galerkin methods for penalty Navier-Stokes equations[J].Math Numer Sinica,1995,17(4):360-380. [9] He Y,Li K T.Nonlinear Galerkin method and two-step method for the Navier-Stokes equations[J].Inc Numer Methods P D Eq,1996,12(3):283-305. [10] Luo Z D,Wang L H.Nonlinear Galerkin mixed element methods for the non stationary conduction-convection problems(?):The continuous-time case[J].Chinese J Numer Math Appl,1998,20(4):71-94. [11] Luo Z D,Wang L H.Nonlinear Galerkin mixed element methods for the non stationary conduction-convection problems(0):The backward one-step Euler fully discrete f ormat[J].Chinese J Numer Math Appl,1999,21(1):86-105. [12] LUO Zhen-dong,ZHU Jiang,WANG Hui-jun.A nonlinear Galerkin Petrov-least squares mixed element method for the stationary Navier-Stokes equations[J].Applied Mathematics and Mechanics(English Edition),2002,23(7):697-708. [13] Li G C,He Y N.Convergence of nonlinear Galerkin finite element algorithm for the steady incompressible equations of the Navier-Stokes type[J].Chinese J Comput Phys,1997,14(1):83-89. [14] Bank R E,Welfert B.A posteriori error estimates for the Stokes equations:A comparison[J].Comput Methods Appl Mech Engrg,1990,82(3):323-340. [15] Bank R E,Welfert B.A posteriori error estimates for the Stokes problems[J].SIAM J Numer Anal,1991,28(3):591-623. [16] Oden J T,Demkowicz L.h-p adaptive finite element methods in computational f luid dynamics[J].Comput Methods Appl Mech Engrg,1991,89(1):11-40. [17] Padra C,Buscaglia G C,Dari E A.Adaptivity in steady incompressible Navier-Stokes equations using discontinuous pressure interpolates[A].In:H Alder,J C Heinrich,S Lavanchy,et al Eds.Num Meth En g Appl Sci,Part?[C].Barcelona:CIMNE,1992,267-276. [18] Wu J,Zhu J Z,Szmelter J,et al.Error estimation and adaptivity in Navier-Stokes incompressible flows[J].Comput Mech,1990,6(2):259-270. [19] Verf rth R.A posteriori error estimators for the Stokes equations[J].Numer Math,1989,55(3):309-325. [20] Verf rth R.A posteriori error estimators and adaptive mesh-refinement techniques for the Navier-Stokes equations[A].In:M Gunzburger,R A Nicolaides Eds.Incompressible Computational Fluid Dynamics,Trends and Advances[C].Cambridge:Cambridge University Press,1993,447-477. [21] Verf rth R.A posteriori error estimates for non-linear problems:Finite element discretizations of elliptic equations[J].Math Comp,1994,62(206):445-475. [22] Oden J T,Wu W,Ainsworth M.An a posteriori error estimate for finite element approximations of the Navier-Stokes equations[J].Comput Methods Appl Mech Engrg,1994,111(2):185-220. [23] Arnica D,Padra C.A posteriori error estimators for steady incompressible Navier-Stokes equations [J].Inc Numer Methods P D Eq,1997,13(5):561-574. [24] Ervin V,Layton W,Maubach J.A posteriori error estimators for a two-level finite element method for the Navier-Stokes equations[J].Inc Numer Methods P D Eq,1996,12(3):333-346. [25] Girault V,Raviart P A.Finite Element Approximations of the Navier-Stokes Equations,Theorem and Algorithms[M].New York:Springer-Verlag,1986. [26] Temam R.Navier-Stokes Equations[M].Amsterdam:North-Holland,1984. [27] Bernardi C,Raugel B.Analysis of some finite elements for the Stokes problem[J].Math Comp,1985,44(169):71-79. [28] LUO Zhen-dong.Theory Bases and Applications of Finite Element and Mixed Finite Element Methods[M].Jinan:Shandong Educational Press,1996.(in Chinese) [29] Ciarlet P G.The Finite Element Method for Elliptic Problems[M].Amsterdam:North-Holland,1978. [30] Luo Z D.The third order estimate of mixed finite element for the Navier-Stokes problems[J].Chinese Quart J Math,1995,10(3):9-12. [31] Cl ment P.Approximation by finite element f unction using local regularization[J].RAIRO,1975,R-2(1):77-84. [32] Layton W.A two level discretization method for the Navier-Stokes equations[J].Comput Math Appl,1993,26(1):33-45. [33] Brezz i F,Fortin M.Mixed and Hybrid Finite Element Methods[M].New York:Berlin,Heidel berg:Springer-Verlag,1991. |