[1] Brezz i F,Douglas J.Stabilized mixed methods for the Stokes problem[J].Numer Math,1988,53(2):225-235. [2] Fix G J,Gunzburger M D,Nicolaides R A.On mixed finite element methods for the first elliptic systems[J].Numer Math,1981,37(1):29-48. [3] Neittanm/aki P,Picard R.On finite element approximation of the gradient for the solution of Poisson equation[J].Numer Math,1981,37(3):333-337. [4] Pehlivanov A I,Carey G F.Error estimates for least-squares finite elements[J].M 2AN,1994,28(5):499-516. [5] Russo A.A posteriori error estimators for the Stokes problems[J].Appl Math Lett,1995,8(1):1-4. [6] Zhou T X,Feng M F.A least squares Petrov-Galerkin finite element method for the staionary Navier-Stokes equations[J].Math Comp,1993,60(202):531-543. [7] ZHOU Tian-xiao.Dual composition finite element methods and theory based on saddle point problems[J].Science in China,Series(E),1997,27(1):75-87.(in Chinese) [8] Girault V,Raviart P A.Finite Element Approximations of the Navier-Stokes Equations,Theorem and Algorithms[M].Series in Computational Mathematics,Springer-Verlag,1986:1-210. [9] LUO Zhen-dong.Theory Bases and Applications of Finite Element and Mixed Finite Element Methods[M].Jinan:Shandong Educational Press,1996,32-144.(in Chinese) [10] Brezz i F,Fortin M.Mixed and Hybrid Finite Element Methods[M].New York,Berlin,Heidel berg:Springer-Verlag,1991,1-190. |