[1] Foias C, Manley O P, Temam R. Modelization of the interact ion of s mall and large eddies in two dimensional turbulent flows[J]. Math Mod Numer Anal,1988,22(2):93-114.
[2] Marion M, Temam R. Nonlinear Galerkin methods[J]. SIAM J Numer Anal,1989,2(5):1139-1157.
[3] Foias C, Jolly M, Kevrekidis I G, et al. Dissipativi ty of numeric al schemes[J]. Nonlinearity,1991,4(4):591-613.
[4] Devulder C, Marion M, Titi E. On the rate of convergence o f nonlin ear Galerkin methods[J]. Math Comp,1992,59(200):173-201.
[5] Marion M, Temam R. Nonlinear Galerkin methods: the finite element case[J]. Numer Math,1990,57(3):205-226.
[6] Marion M, Xu J C. Error estimates on a new nonlinear Galer kin meth od based on two-grid finite elements[J]. SIAM J Numer Anal,1995,32 (4):1170-1184.
[7] Ait Ou Ammi A, Marion M. Nonlinear Galerkin methods and mi xed fini te elements: two-grid algorithms for the Navier-Stokes equations[J]. Numer M ath,1994,68(2):189-213.
[8] LI Kai-tai, Zhou L. Finite element nonlinear Galerkin me thods for pena lty Navier-Stokes equations[J]. Math Numer Sinica,1995,17(4):360-380.
[9] LUO Zhen-dong, Wang L H. Nonlinear Galerkin mixed eleme nt methods for th e non stationary conduction-convection problems(Ⅰ):The continuous-time case[J]. Mathematica Numerica Sinica,1998,20(3):283-304.
[10] LUO Zhen-dong, Wang L H. Nonlinear Galerkin mixed element meth ods for t he non stationary conduction-convection problems(Ⅱ):The backward one-step Eul er fully discrete format[J]. Mathematica Numerica Sinica,1998,20(4):90-108.
[11] Girault V, Raviart P A. Finite Element Approximations of the Na vier-Stokes Equations: Theorem and Algorithms[M]. New York: Springer-Verlag, 1986.
[12] Temam R. Navier-Stokes Equations[M]. New York, Amsterdam: N orth-Holland,1984.
[13] France L P, Hughes T J. Two classes of mixed finite element metho ds[J]. Comput Methods Appl Mech Engrg,1988,69(1):89-129.
[14] Hughes T J, France L P, Balestra M. A new finite element formulat ion for computational fluid dynamics (Ⅴ): Circumventing the Bubuka-Brezzi c ondit ion: A stable Petrov-Galerkin formulation of the Stokes problem accommodating eq ual-order interpolation[J]. Comput Methods Appl Mech Engrg,1986,(1):85-99.
[15] Hughes T J, France L P. A new finite element formulation for comp utations fluid dynamics (Ⅶ): The Stokes problem with various well posed boundar y conditions, symmetric formulations that converge for all velocity pressure spac e[J]. Comput Methods Appl Mech Engrg,1987,65(1):85-96.
[16] Brezzi F, Douglas Jr J. Stabilized mixed method for the Stokes pr oblem[J]. Numer Math,1988,53(2):225-235.
[17] Douglas Jr J, Wang J P. An absolutely stability finite element me thod for the stokes problem[J]. Math Comp,1989,52(186):49 5-508.
[18] Houghes T J, Tezduyar T E. Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations[J]. Comput Methods Appl Mech Engrg,1984,45(3):217-284.
[19] Johson C, Saranen J. Stremline diffusion methods for the incompre ssible Euler and Navier-Stokes equations[J]. Math Comp,1986,47(175):1-18.
[20] Hansbo P, Szepessy A. A velocity-pressure streamline diffusion fi nite element method for the incompressible Navier-Stokes equations[J]. Compu t Methods Appl Mech Engrg,1990,84(2):175-192.
[21] Zhou T X, Feng M F, Xiong H X. A new approach to stability of fin ite elements under divergence constraints[J]. J Comput Math,1992,1 0(1):1-15.
[22] Zhou T X, Feng M F. A least squares Petrov-Galerkin finite elemen t method for the stationary Navier-Stokes equations[J]. Math Comp,1993,60(202):531-543.
[23] LUO Zhen-dong.Theory Bases and Applications of Finite Element and Mixed Finite Element Methods.Evolutions and Application[M].Jinan:Shandong Educational Press,1996.(in Chinese).
[24] Ciarlet P G. The Finite Element Method for Elliptic Problems[M]. Amsterdam: North-Holland,1978. |