[1] CHIEN Wei-zang.Singular Perturbations Theory and Application in Mechanics[M].Beijing:Science Press,1981,111-119.(in Chinese) [2] XIE Ding-yu.Asymptotic Expansions Method+Application in Fluid Mechanics[M].Beijing:Friendship Publish Company,1983,26-43.(in Chinese) [3] Nayfeh A H. Perturbation Methods[M]. New York: Wiley, 1973,23-31. [4] Van Dyke M. Perturbation Methods in Fluid Mechanics[M]. New York: Academic Press Inc, 1964, 9-20. [5] Kaplun S. Low Reynolds number flow past a circular cylinder[J]. J Math Mech,1957,6(3):595-603. [6] Stokes G G. On the effect of the internal friction of fluids on the motion of pendulums[J]. Trans Camb Phil Soc, 1851,9(2):8-106. [7] Oseen C W. Ueber die Stokes'sche formel, und uber eine verwandte aufgabe in der hydrodynamik[J]. Ark Math Astronom Fys,1910,6(29):154-160. [8] Chester W. On Oseen's approximation[J]. J Fluid Mech, 1962,13(3):557-569. [9] YEH Chia-hsun.Fluid M echanics[M].ZHANG Ke-ben,CHANG Di-ming,CHEN Qi-qiang, et al.Transl.Beijing:Higher Education Publish House,1982,262-277.(Chinese version) [10] Whitehead A N. Second approximations to viscous fluid motion[J]. Quart J Pure Appl Math,1889,23(1):143-152. [11] Goldstein S. The steady flow of viscous fluid past a fixed spherical obstacle at small Reynolds numbers[J]. Proc Roy Soc Ser A, 1929,123(1):225-235. [12] Kaplun S, Lagerstrom P A. Asymptotic expansions of Navier-Stokes solutions for small Reynolds numbers[J]. J Math Mech,1957,6(3):585-593. [13] Proudman I, Pearson J R A. Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder[J]. J Fluid Mech, 1957,2(2):237-262. [14] Chester W,Breach D R. On the flow past a sphere at low Reynolds numbers[J]. J Fluid Mech, 1969,37(4):751-760. [15] Taneda S. Studies on wake vortices (Ⅲ): Experimental investigation of the wake behind a sphere at low Reynolds numbers[J]. Rep Res Inst Appl Mech Kyushu Univ, 1956,4(1):99-105. [16] Maxworthy T. Accurate measurements of sphere drag at low Reynolds numbers[J]. J Fluid Mech,1965,23(2):369-372. |