[1] Chang Shi-sheng, Cho Y J, Jung J S, et al. Iterative approximations of fixed points and solutions for strongly accrective and strongly pseudo-contractive mappings in Banach spaces[J]. J Math Anal Appl, 1998, 224(1): 149-165.
[2] Ciric L B. A generalization of Banach's contraction principle[J]. Proc Amer Math Soc, 1974,45(1): 267-273.
[3] Chidume C E. Convergence theorems for strongly pseudo-contractive and strongly accretive mappings[J]. J Math Anal Appl, 1998, 228(1): 254-264.
[4] Chidume C E. Global iterative schemes for strongly pseudo-contractive maps[J]. Proc Amer Math Soc, 1998, 126(9):2641-2649.
[5] Rhoades H E. Convergence of an Ishikawa type iteration scheme for a generalized contraction[J].J Math Anal Appl, 1994, 185(2): 350-355.
[6] XU Hong-kun. A note on the Ishikawa iteration scheme[J]. J Math Anal Appl, 1992, 167 (2):582-587.
[7] Rhoades H E. Comments on two fixed point iteration methods[J]. J Math Anal Appl, 1976, 56(2):741-750.
[8] Naimpally S A, Singh K I. Extensions of some fixed point theorems of Rhoades[J]. J Math Anal Appl, 1983,96(2):437-446.
[9] LIU Qi-hou. On Naimpally and Singh's open questions[J]. J Math Anal Appl, 1987, 124 (1):157-164.
[10] LIU Qi-hou. A convergence theorem of the sequence of Ishikawa iterates for quasi-contractive mappings[J]. J Math Anal Appl, 1990, 146(2): 301-305.
[11] Takahashi W. A convexity in metric space and nonexpansive mappings I[J]. Kodai Math Sem Rep,1970,22(1): 142-149. |