[1] Sun Q P, Hwang K C. Micromechanics modeling for the constitutive behavior of polycrystalline shape memory alloys-1:derivation of general relations[J]. Journal of the Mechanics and Physics of Solids, 1993,41(1):1-17.
[2] WANG Jian, SHEN Ya-peng, WANG She-liang. Constitutive relations of shape memory alloys[J]. Journal of Shanghai Mechanics, 1998, 19(3): 185-195. (in Chinese).
[3] Boyd J G, Lagoudas D C. Thermomechanical response of shape memory composites[J]. Journal of Intelligent Material System and Structures, 1994, 5: 333-346.
[4] Tanaka K. A thermomechanical sketch of shape memory effect: one-dimensional tensile behavior[J]. Res Mechanica, 1986, 18: 251-263.
[5] Sato Y, Tanaka K. Estimation of the energy dissipation in alloys due to stress-induced martenstitic transformation[J].Res Mechanica, 1988, 23: 381-393.
[6] Liang C, Rogers C A. One-dimensional thermomechanical constitutive relations for shape memory materials[J]. J Intell Mater Syst Struct,1990, 1:207-234.
[7] Brison L C, Lammering R. Finite element analysis of the behavior of shape memory alloys and their applications[J]. Int J Solids Structures, 1993,30(23): 3261-3280.
[8] Hill. A self-consistent mechanics of composite materials[J]. J Mech Phys Solids, 1965,13:213-222.
[9] Magee C L. The Nucleation of Martensite, in Phase Transformations[M]. Metals Park OH:American Society for Metals, 1970, 115-156.
[10] Wayman C M, Duerig T W. An introduction to martensite and shape memory[A]. In: T W Duerig, K N Melton, D Stockel, C M Wayman Eds. Engineering Aspects of Shape Memory Alloys[C]. London: Butterworth-Heineman Ltd, 1990, 3-20.
[11] Hamada K, Lee J H, Mizuuchi K, et al. Thermomechanical behavior of TiNi shape memory alloy fiber reinforced 6061 aluminum matrix composite[J]. Metallurgical and Materials Transaction A,1998, 29(3):, 1127-1135. |