[1] LIU Ren-huai. Non-linear bending for circular sandwich plate[J]. Applied Mathematics and Mechanics (English Edition), 1981,2(2): 189-208.
[2] LIU Ren-huai, SHI Yun-fang. Exact solution the circular sandwich plate with large deflection[J].Applied Mathematics and Mechanics (English Edition), 1982, 3(1): 11-24.
[3] WANG Zhen-ming, LIU Guo-xi, LU Ming-shen. The finite deflection equations of anisotropic laminated shallow shells[J]. Applied Mathematics and Mechanics (English Edition), 1982,3(1):49-65.
[4] Chia C Y. Geometrically nonlinear behavior of composite plates[J]. A Review Appl Mech, 1988,41 (12):439-451.
[5] YIN Bang-xin. Iterative method on large deflection nonlinear problem of laminated composite shallow shells and plates[J]. Applied Mathematics and Mechanics (English Edition), 1999, 20(7): 773-780.
[6] WANG Xin-zhi, WANG Lin-xiang, XU Jian. Non-symmetrical problem of circular thin plates[J].Chinese Science Bulletin, 1989, 34(16): 83-85. (in Chinese).
[7] WANG Xin-zhi, WANG Lin-xiang, HONG Xiao-bo, et al. Displacement solution of circular plates with unsymmetrical large deflection[J]. Natural Science Progess, 1993, 3(2): 133-144. (in Chinese).
[8] WANG Xin-zhi, REN Dong-yun, WANG Lin-xiang, et al. Non-symmetrical large deformation of a shallow thin spherical shell[J]. Applied Mathematics and Mechaincs (English Edition), 1996, 17(8): 705-722.
[9] YEN Kai-yuan, LIU Ren-huai, LI Si-lai. Nonlinear stabilities of thin circular shallow shells under action of axisymmetrical uniformly distributed line loads[J]. Journal of Lanzhou University (Natural Science), 1965,18(2): 10-33. (in Chinese).
[10] YEH Kai-yuan, WANG Xin-zhi. Modified iteration method in the problem of large deflection of thin circular plates with non-uniform thickness[A]. In: CHIEN Wei-zang Ed.ICNM-I[C].Beijing: Science Press, 1985, 398-403. |