[1] Shannon C E. A mathematical theory of communication[J]. Bell System Tech J,1948,27(3):379-423.
[2] Walter G G. A sampling theory for wavelet subspace[J]. IEEE Tram Inform Theory, 1992,38(2):881-884.
[3] GUO Than-de, GAO Zi-you, WU Shi-quan. Approximated sampling theorem for the arbitrarycontinuous function based on approximated solution of two-scale equation[J]. Journal of SystemScience and Mathematical Science,2001,21(1):64-71.(in Chinese)
[4] YANG Shou-zhi, CHENG Zheng-xing. Sampling theorem for bounded interval wavelet subspaceand approximation theory of function in H2(1) space[J]. Acta Mathemactica Scienctia, 2001,21(3):410-415.
[5] Daubechies I, Lagarias J. Two-scale difference equation:Ⅰ. Global regularity of solutions[J].SIAM J Math Anal, 1991,22(5):1388-1410.
[6] Daubechies I, Lagarias J. Two-scale difference equation: Ⅱ Local regularity, infinite products andfractals[J]. SIAM J Math Anal, 1991,22(4):1031-1079.
[7] Lau K S, Wang J R. Characterization of solutions for two-scale dilation equations[J]. SIAM JMath Anal, 1995,25(4):1018-1046.
[8] CHENG Zheng-xing. Algorthim and Application on Wavelet Analysis[M]. Xi'an:Xi'an Jiaotong University Press, 1998. (in Chinese)
[9] Berger M A, Wang Y. Multidimensional two-scale dilation equations [A]. In: Chui C K Ed.Wavelet: Atutorial in Theory and Applications [C]. New York: Academic Press, 1992,295-323.
[10] HE Wen-jie, LAI Ming-jun. Examples of bivarite nonseparable compactly supported orthonormalcontinuous wavelets[J]. IEEE Trans Inform Theory,2000,9(5):949-953. |