[1] Borisuk M T, Tyson J J. Bifurcation analysis of a model of mitotic control in frog eggs [J].Journal of Theoretical Biology, 1998, 195(1):69-85. [2] Novak B, Tyson J J. Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos[J]. Journal of Cell Science, 1993,106(4):1153-1168. [3] Novak B, Tyson J J. Modeling the cell division cycle: M-phase trigger, oscillations, and size control[J]. Journal of Theoretical Biology, 1993, 165(1):101-134. [4] ZHENG Zuo-huan, ZHOU Tian-shou, ZHANG Suo-chun. Dynamical behavior in the modeling of cell division cycle[J]. Chaos, Solitons & Fractals ,2000,11(4):2371-2378. [5] FENG Bei-ye, ZENG Xuan-wu. Qualitative analysis of a mitotic model of frog eggs[J]. Acta Mathematicae Applicatae Sinica, 2002,25(3):460-468.(in Chinese) [6] ZHANG Suo-chun. Oregonator: General results of positive steady state and its stability[J]. Chinese Science Bulletin, 1996,41(10):798-804. [7] ZHANG Suo-chun. Mathematical Theory and Numerical Method of Modern Oscillatory Reaction [M]. Zhengzhou: Henan Scientific and Technic Press, 1991.(in Chinese) [8] ZHANG Jin-yuan, FENG Bei-ye. Geometric Theory and Bifurcation Problem of Ordinary Differential Equation[M]. Beijing: Peking University Press, 2000.(in Chinese) [9] Hassard B D, Kazarinoff N D, Wan Y H. Theory and Application of Hopf Bifurcation [M]. En gland: Cambridge University Press, 1981. |