[1] Harker P T, Pang J S. Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications[J]. Math Prog, 1990,48(2):161-220. [2] Harker P T, Xiao B. Newton' s methods for nonlinear complementarity problem: a B-differentiable equation approach[J]. Math Prog, 1990,48(3):339-358. [3] Pang J S. Newton's method for B-differentiable equations [J]. Math Oper Res, 1990,15(2):311-341. [4] Monteriro R D C, Pang J S, Wang T. A Positive algorithm for nonlinear complementarity problem [J]. SIAM J Opt, 1995,5(1): 129-148. [5] Pang J S. A B-differentiable equation-based, globally and locally quadratically convergent algorithm for nonlinear problems [J]. Math Prog, 1991,51(1):101-131. [6] Pang J S. Gabriel S A. NE/SQP: A robust algorithm for nonlinear complementarity problems[J].Math Prog, 1993,60(2):295-338. [7] Mathiesen L. An algorithm based on a sequence of linear complementarity problems applied to a Walrasian equilibrium model: an example[J]. Math Prog, 1987,37(1):1-18. [8] Friedlander A, Martinez J M, Stantos S A. A new strategy for solving variational inequalities in bounded polytopes [J]. Numer Funct Anal and Optimiz, 1995,16(5/6):653-668. |