[1] Ott E, Grebogi C, Yorke J A. Controlling Chaos[J]. Phys Rev Lett, 1990, 64(11):1196-1199. [2] Ditto W L, Rauseo S N, Spano M L. Experimental control of chaos[J]. Phys Rev Lett, 1990, 65(26):3211-3214. [3] Singer J, Wang Y-Z, Bau H H. Controlling a chaotic system[J]. Phys Rev Lett, 1991, 66(9):1123-1125. [4] Auerbach D, Grebogi C, Ott E, et al. Controlling chaos in high dimensional systems[J]. Phys Rev Lett, 1992, 69(24):3479-3482. [5] Pyragas K. Continuous control of chaos by self-controlling feedback[J]. Phys Lett A, 1992, 176(6):421-428. [6] Petrov V, Peng B, Showalter K. A map-based algorithm for controlling tow-dimensional chaos[J]. J Phys Chem, 1992, 96(5):7506-7513. [7] Romeiras F J, Grebogi C, Ott E, et al. Controlling chaotic dynamic systems[J]. Phys D, 1992, 58(2):165-192. [8] YANG Ling, LIU Zeng-rong. An improvemtnt and proof of OGY method [J]. Applied Mathematics and Mechanics (English Edition ), 1998, 19(1):1-8. [9] Shinbrot T, Ott E, Grebogi C, et al. Using chaos to direct trajectories to targets[J]. Phys Rev Lett, 1990, 65(26):3215-3218. [10] Shinbrot T, Grebogi C, Ott E, et al. Using chaos to target stationary states for flows[J]. Phys Lett A, 1992, 169(3):349-354. [11] Shinbrot T, Ott E, Grebogi C, et al. Using chaos to direct orbits to targets in systems described by a one-dimensional map[J]. Phys Rev A, 1992, 45(6):4165-4168. [12] Paskota M, Mees A I, Teo K L. Directing orbits of chaotic dynamical systems[J]. Int J Bifur Chaos, 1995, 5(2):573-583. [13] Yang L, Liu Z, Mao J. Controlling hyperchaos[J]. Phys Rev Lett, 2000, 84(1):67-70. |