[1] Borglin A,Keiding H.Existence of equilibrium actions and of equilibrium:A note on the "new " existence theorems[J].J Math Econom,1976,3(2):313-316. [2] Debreu G.A Social equilibrium existence theorem[J].Proc Nat Acad Sci USA,1952,38(1):121-126. [3] Yannelis N C,Prabhakar N D.Existence of maximal elements and equilibria in linear topological spaces[J].J Math Econom,1983,12(2):233-245. [4] Toussaint S.On the existence of equilibra in economies with infinite commodities and without ordered preferences[J].J Econom Theory,1984,33(1):98-115. [5] Tulcea C I.On the equilibriums of generalized games[R].The Center for Math,Studies in Economics and Management Science,Paper No.696,1986. [6] Tulcea C I.On the approximation of upper semi-continuous correspondences and the equilibriums of generalized games[J].J Math Anal Appl,1988,136(2):267-289. [7] Ding X P,Kim W K,Tan K K.Equilibria of noncompact generalized games with L*-majorized preference correspondences[J].J Math Anal Appl,1992,162(3):508-517. [8] Ding X P,Kim W K,Tan K K.Equilibria of generalized games with L-majorized correspondences[J].Internat J Math Math Sci,1994,17(4):783-790. [9] Ding X P,Tan K K.A minimax inequality with applications to existence of equilibrium point and fixed point theorems[J].Colloq Math,1992,63(1):233-247. [10] Ding X P,Tan K K.On equilibria of noncompact generalized games[J].J Math Anal Appl,1993,177(1):226-238. [11] Ding X P,Tarafdar E.Fixed point theorems and existence of equilibrium points of noncompact abstract economies[J].Nonlinear World,1994,1(1):319-340. [12] Ding X P.Coincidence theorems and equilibria of generalized games[J].Indian J Pure Appl Math,1996,27(11):1057-1071. [13] Ding X P.Fixed points,minimax inequalities and equilibria of noncompact generalized games[J].Taiwanese J Math,1998,2(1):25-55. [14] Ding X P.Equilibria of noncompact generalized games with U-majorized preference correspondences[J].Appl Math Lett,1998,11(5):115-119. [15] Ding X P.Maximal element principles on generalized convex spaces and their application[A].In:R P Argawal Ed.Ser Math Anal Appl[C].London:Taylor and Francis,2002,149-174. [16] Ding X P,Yuan G X-Z.The study of existence of equilibria for generalized games without lower semicontinuity in locally convex topological vector spaces[J].J Math Anal Appl,1998,227(2):420-438. [17] Tan K K,Yuan X Z.Existence of equilibrium for abstract economies[J].J Math Econom,1994,23(2):243-251. [18] Tan K K,Yuan X Z.Approximation method and equilibria of abstract economies[J].Proc Amer Math Soc,122(3):503-510. [19] Tan K K,Zhang X L.Fixed point theorems on G-convex spaces and applications[J].Proc Nonlinear Funct Anal Appl,1996,1(1):1-19. [20] Tarafdar E.A fixed point theorem and equilibrium point of an abstract economy[J].J Math Econom,1991,20(2):211-218. [21] Tarafdar E.Fixed point theorems in H-spaces and equilibrium points of abstract economies[J].J Austral Math Soc,Ser A,1992,53(1):252-260. [22] Yuan G X-Z.The study of minimax inequalities and applications to economies and variational inequalities[J].Mem Amer Math Soc,1998,132(625):1-132. [23] Deguire P,Tan K K,Yuan X Z.The study of maximal elements, fixed points for LS-majorized mappings and their applications to minimax and variational inequalities in product topological spaces[J].Nonlinear Anal,1999,37(8):933-951. [24] Yuan G X-Z.KKM Theory and Application in Nonlinear Analysis[M].New York:Marcel Dekker,Inc 1999. [25] Yuan G X-Z.The existence of equilibria for noncompact generalized games[J].Appl Math Lett,2000,13(1):57-63. [26] Shen Z F.Maximal element theorems of H- majorized correspondence and existence of equilibrium for abstract economies[J].J Math Anal Appl,2001,256(1):67-79. [27] Singh S P,Tarafdar E,Watson B.A generalized fixed point theorem and equilibrium point of an abstract economy[J].J Computat Appl Math,2000,113(1):65-71. [28] Park S,Kim H.Coincidence theorems for admissible multifunctions on generalized convex spaces[J].J Math Anal Appl,1996,197(1):173-187. [29] Park S,Kim H.Foundations of the KKM theory on generanized convex spaces[J].J Math Anal Appl,1997,209(3):551-571. [30] Park S.Continuous selection theorems for admissible multifunctions on generalized convex spaces[J].Numer Funct Anal Optimiz,1999,25(3):567-583. [31] Park S.Fixed points of admissible maps on generalized convex spaces[J].J Korean Math Soc,2000,37(4):885-899. [32] Park S.Coincidence theorems for the better admissible multimaps and their applications[J].Nonlinear Anal,1997,30(12):4183-4191. [33] Park S.A unified fixed point theory of multimaps on topological vector spaces[J].J Korean Math Soc,1998,35(4):803-829.Corrections,ibid,1999,36(4):829-832. [34] Chang T H,Yen C L.KKM property and fixed point theorems[J].J Math Anal Appl,1996,203(1):224-235. [35] Ben-El-Mechaiekh H,Chebbi S,Florenzano M,et al.Abstract convexity and fixed points[J].J Math Anal Appl,1998,222(1):138-151. [36] Aubin J P,Ekeland I.Applied Nonlinear Analysis[M].New York:John Wiley & Sons,1984. [37] Dugundji J.Topology[M].Boston:Allyn and Bacon,1966. |