[1] ZHANG Lian-sheng. An approach to finding a global minimization with equality and inequality constraints [J]. Journal of Computational Mathematics, 1988, 6(4):375-382. [2] ZHENG Quan, JIANG Bai-chuan, ZHUANG Song-lin. A methods f or finding global extreme[J]. Acta Mathematicae Applicatae Sinica, 1978, 2(1):164-174. (in Chinese). [3] CHEW Soo-hong, ZHENG Quan. Integral Global Optimization[M]. Lecture Notes in Economics and Mathematical Systems, No. 298, Springer-Verlag, 1988. [4] WU Dong-hua, TIAN Wei-wen, ZHANG Lian-sheng et al. An algorithm of modif ied integral-levelset method f or solving global optimization[J]. Acta Math ematicae Applicatae Sinica, 2001, 24(1):100-110. (in Chinese). [5] HUA Luo-geng, WANG Yuan. Applications of Number Theory to Numerical Analysis [M]. Berlin and Beijing:Springer-Verlag and Science Press, 1978. (in Chinese). [6] ZHANG Lian-sheng, TIAN Wei-wen, YAO Yi-rong. An another implementable approach for integral global optimization[J]. Chinese Journal of Operations Research, 1996, 15(1):60-64. (in Chinese). [7] WU Dong-hua, TIAN Wei-wen, HUANG Wei. An actual algorithm for solving global optimization[J]. Journal of Shanghai University (Natural Science), 1998, 4(5):482-486. (in Chinese). [8] WU Dong-hua, TIAN Wei-wen, ZHANG Lian-sheng. An implementable approach for solving globaloptimization and its convergence[J]. OR Transactions, 1999, 3(2):82-89. (in Chinese). [9] WU Dong-hua, TIAN Wei-wen, ZHANG Lian-sheng. Optimality condition for solving global optimization[J]. Or Transactions, 2000, 4 (1):33-42. |