GLOBAL ANALYSIS OF SOME EPIDEMIC MODELS WITH GENERAL CONTACT RATE AND CONSTANT IMMIGRATION
LI Jian-quan1,2, ZHANG Juan1, MA Zhi-en1
1. Department of Applied Mathematics, Xi’an Jiaotong University, Xi’an 710049, P. R. China; 2. Telecommunication Engineering Institute, Air Force Engineering University, Xi’an 710077, P. R. China
LI Jian-quan;ZHANG Juan;MA Zhi-en. GLOBAL ANALYSIS OF SOME EPIDEMIC MODELS WITH GENERAL CONTACT RATE AND CONSTANT IMMIGRATION. Applied Mathematics and Mechanics (English Edition), 2004, 25(4): 396-404.
[1] Kermack W O, McKendrick A G. Contributions to the matlhematical theory of epidemics-Part 1[J].Proc RoySoc London Ser A, 1927,115(3) :700-721. [2] Mena-Lorca J, Hethcote H W. Dynamic models of infectious diseases as regulators of population sizes[J]. J Math Biol, 1992,30(4):693-716. [3] Li J, Ma Z. Qualitative analysis of SIS epidemic model with vaccination and varying total population size[J]. Math Comput Modelling ,2002,35(11/12) :1235-1243. [4] Heesterbeck J A P, Metz J A J. The saturating contact rate in marriage-and epidemic models[J]. J Math Biol, 1993,31(2) :529-539. [5] Brauer F, Van den Driessche P. Models for transmission of disease with immigration of infectives[J].Math Biosci, 2001,171(2): 143-154. [6] Han L,Ma Z,Hethcote H W. Four predator prey models with infectious diseases[J]. Math Comput Modelling, 2001,34(7/8): 849-858. [7] LaSalle J P. The Stability of DynamicalSystem [M]. New York: Academic Press, 1976. [8] Jeffries C, Klee V, Van den Driessche P. When is a matrix sign stable? [J]. Canad J Math, 1977,29(2) :315-326.