[1] Toumi I, Kumbaro A. An approximate linearized Riemann solver for a two-phase model[J]. J Comput Phys, 1996,124: 286-300. [2] Maso G Dal, Floch P Le, Murat F. Definition and weak stability of nonconservative products[J]. J Math Pures Appl, 1995,74:483-548. [3] Sainaulieu L. Finite volume approximate of two phase-fluid flows based on an approximate Roe-type Riemann solver[J]. J Comput Phys, 1995,121:1-28. [4] Saurel R, Abgrall R. A multiphase Godunov method for compressible multi-fluid and multiphase flows[J]. J Comput Phys, 1999,150: 425-467. [5] Abgrall R. How to prevent pressure oscillations in the multicomponent flow calculations: A quasi conservative approach[J]. J Comput Phys, 1996,125:150-160. [6] Drew D A. Mathematical modeling of two-phase flow[J].Ann Rev Fluid Mech, 1983,15:261-291. [7] Saurel R, Gallout T. Models et Methods Numeriques Pour Les Ecoulements Fluids[M]. Cours de DEA, Center de Mathematiques. Provence:University de Provence, 1998. [8] Toro EF. Riemann Solvers and Numerical Methods for Fluid Dynamics[M]. Berlin: Springer-Verlag, 1997. [9] Roe P L. Approximate Riemann solver, parameter vectors, and difference schemes[J]. J Comput Phys, 1981,43: 357-372.
Yi XIA;Jianzhong LIN;Fubing BAO;T. L. CHAN.
Flow instability of nanofuilds in jet
[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(2): 141-152.