[1] ZHONG Wan-xie. A New Systematic Methodology for Theory of Elasticity[M]. Dalian:Dalian University of Technology Press, 1995. (In Chinese). [2] XU Xin-sheng, ZHONG Wan-xie, ZHANG Hong-wu. The Saint-Venant problem and principle in elasticity[J]. Int J Solids Structures, 1997,34(22): 2815-2827. [3] Hirono I, Lui W W, Yokoyama K. Time-domain simulation of electromagnetic field using a symplectic integrator[J]. IEEE Trans Microwave and Guided Wave Lett, 1997,7(9):79-281. [4] MA Jian-wei, XU Xing-sheng, YANG Hui-zhu. Disturbance of plane viscous flow and Hamiltonian system[J]. J Appli Mech, 2001, 18(4): 82-86. (In Chinese). [5] Beylkin G. On the representation of operators in bases of Compactly supported wavelets[J]. SIAM J Numer Anal, 1992,29(6): 1716-1740. [6] MA Jian-wei, ZHU Ya-ping, YANG Hui-zhu. Multiscale-combined seismic waveform inversion using orthogonal wavelet transform[J]. Electron Lett,2001,37(4):261-262. [7] MA Jian-wei, YANG Hui-zhu. Simulation of acoustic wave propagation in complex media using MRFD method[J]. Acta Phys Sinica, 2001, 50(8): 1415-1420. [8] Dahmen W. Wavelet methods for PDEs-some recent developments[J]. J Comput Appl Math, 2001,128(1/2): 133-185. [9] Holmstrom M. Solving hyperbolic PDEs usinginterpolating wavelets[J]. SIAM J Sci Comput,1999,21(2): 405-420. [10] Vasilyev O, Bowman C. Second-generation wavelet collocation method for the solution of PDEs[J].J Comput Phys,2000,165(2): 660-693. [11] Reich S. Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations[J]. J Comput Phys,2000,157(2): 473-499. |